
��

�

�������	��

����
����������	�
�

Developers have many choices for hardware and programming for USB embedded
host systems. This chapter will help you choose a platform that has the USB host
capabilities your project needs.

����������	
�
��
�������
���
Because embedded systems typically support a limited number of peripheral types,
most USB hosts in embedded systems don’t need the full capabilities of a conven-
tional USB host. At the same time, some USB hosts in embedded systems need capa-
bilities that conventional hosts don’t have, such as the option to turn off bus power
when the bus is idle.

���������	
�����
��
A conventional PC’s function and attached peripherals vary with the applications that
users install and run. A PC in a science lab might connect to a variety of lab instru-
ments, while a home PC might need to support the latest game controller. USB hosts
in conventional PCs must support the wide variety of devices that users might attach.

����	
���

�
���

To do so, the host supports multiple bus speeds and external hubs. Each host port can
provide 500 mA (900 mA for SuperSpeed) to an attached device. The operating sys-
tem (OS) provides drivers for popular USB device classes, and users can load drivers
for additional devices as needed.
In contrast, embedded systems have defined functions. The firmware programmed
into the system determines the system’s function and the number and types of sup-
ported USB devices. These devices in turn determine what speeds the host must sup-
port, whether the host needs to support external hubs, and how much current the
host port(s) must provide. Adding support for new devices typically requires a firm-
ware update.
Some embedded systems provide both USB host and USB device functions. These
systems may have a dedicated port for each function or a single dual-role port that can
serve as both a host and device port, swapping roles as needed.

���	��������	����������	����
To reduce user confusion and frustration, a USB embedded host system can provide a
Targeted Peripheral List that names devices that are known to work with the system.
For example, a vendor might list manufacturers and model numbers of tested print-
ers. Other printer models may also work, but the list enables users to rely on known
good peripherals.
The USB-IF’s On-The-Go and Embedded Host Supplement to the USB Revision 2.0
Specification defines requirements for USB host systems that provide a Targeted
Peripheral List. The specification calls these systems Targeted Hosts.
Two types of Targeted Hosts are Embedded Host and On-The-Go (OTG) systems
(Figure 2-1).

Figure 2-1. An Embedded Host system can have multiple USB ports, while an

OTG system has a single dual-role port.

�������	���������
��
�����	
��

��

An Embedded Host system has one or more host ports and may also have a device
port. An OTG system has a single port that can function as both a host and device
port. Some requirements are relaxed for Targeted Host systems, and OTG systems
have added responsibilities for managing the dual-role port.
On attachment of an unsupported peripheral, including a hub on a system that
doesn’t support hubs, a Targeted Host system shouldn’t fail silently but should provide
a message or other indicator to inform the user that the host doesn’t support the
device.
This chapter focuses on Embedded Hosts and the host capabilities of OTG systems.
Chapter 11 has more about using the unique capabilities of OTG ports.

������������
The ports in an Embedded Host system function much like ports in conventional
PCs but without the need to support the bus speeds and bus currents that the targeted
peripherals don’t use. Table 2-1 compares the requirements for Embedded Host ports
and conventional host ports.

An Embedded Host system can support just about any combination of speeds needed
for the targeted peripherals. If all of the targeted peripherals use low speed or all use
full speed, the system needs to support only one speed. A system that supports high

���������	
��

������ ������������
���� ���
���
��������
����

Communicate at high speed Yes Must support all devices on the
Targeted Peripheral List. May support
high, full, and low speeds; high and
full speeds; full and low speeds; full
speed only; or low speed only.

Communicate at full speed Yes

Communicate at low speed Yes

Support external hubs Yes Optional

Provide Targeted Peripheral
List

No Yes

Minimum available bus
current per port

500 mA (100 mA if
battery-powered)

8 mA or the amount needed by
targeted peripherals, whichever is
greater

OK to turn off VBUS when
unneeded?

No Yes

Connector 1 or more Standard-A
receptacles

1 or more Standard-A receptacles

Table 2-1: USB 2.0 embedded hosts have different requirements compared to

conventional USB 2.0 hosts.

����	
���

���

speed must also support full speed. All host ports should support the same speeds and
devices. The On-The-Go and Embedded Host supplement applies to the USB 2.0 spec-
ification and thus offers no specific guidance for USB embedded hosts on SuperSpeed
systems.

���������	���	���	�
���
To lengthen battery life, embedded systems that use battery power typically conserve
power when possible. Unlike conventional USB hosts, Embedded Host systems have
the option to turn off Vbus to save power when the bus is idle.

When Vbus is off, the host needs a way to detect device attachment, and already
attached devices need a way to signal that they want to communicate on the bus. Two
protocols, the Attach Detection Protocol and the Session Request Protocol, meet
these needs.

��������	�	��
���
�������

Conventional hosts detect device attachment by monitoring for a voltage change on
the D+ or D- data line. But the USB 2.0 specification forbids devices from powering
the pull-up resistor on D+ or D- when Vbus is absent except to do data-line pulsing
for the Session Request Protocol as described below. The Attach Detection Protocol
(ADP) provides a way for a host to detect device attachment when Vbus is absent.

An Embedded Host or OTG system performs ADP probing by discharging the Vbus
line, then measuring the time required for a known current to charge the line to a
known voltage. If the line doesn’t charge within the expected time, no device is
present. The probing repeats about every 1.75 s. Host support for ADP is optional.
Hubs don’t support ADP probing, so if a hub lies between the host and device, the
host can’t use ADP probing.

�	��
����	��	���
�������

If the host has turned off Vbus, a device can use the Session Request Protocol (SRP)
to request restoring Vbus.

A device requests the host to restore Vbus by performing data-line pulsing, which
consists of switching in the pull-up on D+ (for full and high speed) or D- (for low
speed) for 5–10 ms. The host detects the voltage. Hubs don’t recognize SRP signaling,
so if a hub lies between the host and device, the device can’t use SRP.

An Embedded Host or OTG system that ever turns off Vbus with a series-A plug
inserted must support SRP.

�������	���������
��
�����	
��

��

�����
����	��	�	���	�� ���
An embedded system with USB host support can also provide a device port and func-
tion as a USB device. For example, a data logger might have a host port that connects
to a drive for saving data and a device port that connects to a PC for uploading data.
Unlike OTG systems, which can perform only one function at a time, a system with
conventional host and device ports can function as a host and device at the same time.

����

�
����
���
�
To function as a USB host, an embedded system must have a system processor, a USB
host controller, a root hub, one or more host receptacles, and a power source (Figure
2-2).

�!����	��
����
�
The system processor is a microcontroller or other processor chip that executes the
system’s firmware. As explained later in this chapter, the choice of processor depends
in part on the needed performance for USB communications.

���	"
��	#
���
����
The host-controller hardware includes electrical interfaces for one or more host ports
and logic to implement low-level host protocols. The hardware can be in the sys-
tem-processor chip or on a dedicated chip that interfaces to the system processor.
The electrical interface is one or more transceivers (for USB 2.0) or transmitters and
receivers (for SuperSpeed) that interface to connectors.

Figure 2-2. A USB host consists of a processor, USB host controller, root hub,

one or more USB host receptacles, and a power source.

����	
���

���

The host controller’s internal logic handles functions such as generating transactions
to send data provided by the system onto the bus, making data received in transac-
tions available to the system, error checking, and other tasks detailed in Chapter 8 of
the USB 2.0 or USB 3.0 specification.

�

�	"�$	
The root hub provides an interface between the host controller and its port(s). A root
hub performs the same functions as external USB hubs, but the interface to the host
controller is specific to the host hardware.

"
��	#
�����
��
Ports that function only as hosts ports use the same Standard-A receptacles that PCs
use (Figure 2-3).

A system can have one or more host ports.
Designers of products that have both Standard-A (host) and type-B (device) recepta-
cles should use product design, labeling, and product literature to inform users of the
product’s function. In particular, the product’s design and labeling should make it
clear that the product isn’t a hub.

Figure 2-3. The BeagleBoard-xM has four Standard-A host receptacles.

�������	���������
��
�����	
��

��

�
����	
�	���	#������
The USB host provides a nominal +5V to all devices that attach directly to the host
ports. Embedded Host ports must be capable of providing 8 mA or the amount of
bus current the supported devices need, whichever is greater. Devices that attach to an
external hub receive power from the hub. A standard hub can supply 100 mA per port
if bus powered (150 mA for SuperSpeed) or 500 mA per port if self powered (900 mA
for SuperSpeed).

����������	
���	�

The motivation for developing the USB interface was to make it easy to use peripher-
als of all kinds on conventional PCs. To keep the cost of devices low, the host is
responsible for managing the bus, including scheduling traffic and providing and
managing power. Devices just need to respond to communications and other events
initiated by the host and upstream hubs.
On some USB embedded host platforms, the OS or a host module handles many of
the USB host functions. On other platforms, the developer must provide firmware for
these tasks.

���������	���	%����������	�� ����
A host or hub detects an attached device by monitoring the voltage on the data lines
and optionally by using the Attach Detection Protocol as described above. Hubs use
control and interrupt transfers to inform the host of newly attached devices. On
detecting a device, the host attempts to enumerate the device and assign a driver.

����
�����	%&������	"�$�
A USB embedded host can support external hubs or require all devices to attach
directly to a host port. A host that supports hubs can support the hub class, including
providing 500 mA to bus-powered hubs and supporting five tiers of hubs (Figure
2-4), or the host can support specific hub models.

'�������	�������
The host schedules traffic on the bus, reserving time for endpoints that have guaran-
teed bandwidth and scheduling other traffic in the time that remains.

����	
���

���

'�������	�
���
During enumeration, a device’s configuration descriptor requests bus current from the
host. If the requested current isn’t available, the host refuses to configure the device.
To conserve power when the bus has no traffic, a host can use bus-signaling protocols
to request devices to enter the Suspend state and reduce their use of bus current.
When in the Suspend state, devices can use the remote wakeup protocol to request
communications with the host. Embedded Host systems that are supplying bus power
can remove power from the bus when the bus is idle.

Figure 2-4. With support for the hub class, a host can have five tiers of external

hubs.

�������	���������
��
�����	
��

��

#
�����������	����	�� ����
The ultimate purpose of a USB host is to exchange data with devices. The devices
may belong to USB classes or use vendor-defined protocols.

��		
�����������	�����������	
�
Because of the host’s many responsibilities, adding USB host capability to a small
embedded system may seem like a daunting task. Fortunately, a variety of hardware
and programming platforms can ease the way.

#
�������	����
��
Host hardware and software are available for just about any need. Systems that need
capabilities comparable to conventional PCs can use high-end processors targeted to
embedded applications. Cost-sensitive systems that need good performance can use
mid-range microcontrollers with USB host support either on-chip or in an external
controller. Where high performance isn’t essential, even 8-bit microcontrollers can
access USB devices by interfacing to host modules that manage USB protocols.
The amount and type of programming the developer needs to provide host commu-
nications varies widely depending on the host hardware and the amount and type of
firmware support for host communications. If you need to write USB host code from
the ground up, the Linux source code for USB host communications can provide a
model.
Table 2-2 compares options for implementing an Embedded Host port in an embed-
ded system.

�	����
�	�� ������� ����
��������������

�������

Embedded PC with host
controller

beagleboard.org,
Digi International Inc.,
EMAC, Inc.

Linux or Windows API, other
protocols supported by the OS
and programming
environment

General-purpose
microcontroller with on-chip
host controller

Cypress Semiconductor,
Freescale Semiconductor Inc.,
Microchip Technology,
Texas Instruments

Libraries from chip provider

Table 2-2: Many hardware options are available for implementing hosts in

embedded systems. (Part 1 of 2)

����	
���

���

%�$�����	�#
At its heart, USB is an interface for PCs, and PC OSes such as Linux and Windows
have rich support for USB host communications. An embedded PC can take advan-
tage of this built-in support by using a distribution or edition of a PC OS targeted to
small systems.
In an embedded PC, applications can access devices in much the same way that appli-
cations access devices on conventional PCs. The OS manages enumeration and other
low-level protocols and provides drivers for popular USB device classes.
With an embedded PC, you can use many of the same development tools you use
when developing mainstream PC applications. You can buy boards with Linux or
Windows installed, or you can install an OS on suitable hardware.
Sources for embedded PCs with Linux or Windows installed include Digi Interna-
tional Inc. and EMAC, Inc. Chapter 3 has more about a Linux USB Embedded Host
system that uses the BeagleBoard-xM open development board.

(������)����
��	��
����
�
A general-purpose microcontroller or other processor with an on-chip host controller
allows full control of the firmware with low per-unit cost. The down side is the effort
needed to program host communications. Firmware typically manages device detect-
ing and enumeration, communications down to the transaction level, and bus power.

External host interface chip
plus general-purpose
microcontroller

PLX Technology,
Maxim Integrated Products,
Inc., ST-Ericsson

Libraries from chip provider

Processor with on-chip host
module

FTDI (Vinculum II) Vendor-specific API

Host module with interface to
external processor

FTDI (Vinculum II in Vincil
mode)

Vendor-specific command set

Processor with USB host and
support for .NET Micro
Framework and USB host
communications

GHI Electronics .NET Micro Framework
classes

�	����
�	�� ������� ����
��������������

�������

Table 2-2: Many hardware options are available for implementing hosts in

embedded systems. (Part 2 of 2)

�������	���������
��
�����	
��

��

Chip vendors often provide firmware libraries that implement basic host communica-
tions and provide a foundation for application programming.
Sources for microcontrollers and processors with on-chip host controllers include
Cypress Semiconductor, Freescale Semiconductor Inc., Microchip Technology, and
Texas Instruments.
A microcontroller or other processor that doesn't have an on-chip USB host control-
ler can use an external host interface chip. For example, ST-Ericsson’s ISP1763A host
controller can use an 8- or 16-bit bus interface to a system processor. Other sources
for host interface chips are Maxim Integrated Products, Inc. and PLX Technology.

"
��	'
����
For projects that don’t have the firmware resources to support USB protocols, a USB
host module can be a solution. The module manages enumeration and low-level com-
munications and supports commands or an API for accessing popular device types.
FTDI’s Vinculum II is a host module with built-in support for accessing drives, key-
boards, and other devices.
The Vinculum II has an on-chip processor core that supports an API for accessing
USB devices. FTDI provides a C compiler for the processor. Supported USB device
classes includes mass storage, hub, HID, still image, and audio. The module can also
communicate with FTDI’s FT232x USB UART devices.
The Vinculum II also supports an alternate mode that can use an asynchronous serial
(UART), SPI, or parallel interface to an external processor. The processor uses defined
commands to exchange data with USB devices. The Vinculum II handles the USB
protocols and communications. This mode emulates the first-generation Vinculum.
For more on how to use the Vinculum II, download the free ebook Embedded USB
Design By Example by John Hyde from usb-by-example.com.

��
����
�	����	*+%�	'���
	
�����
�,
Microsoft’s .NET Framework is a popular programming framework for Windows
applications written in .NET languages such as Visual C#. If you want to program in
Visual C# but don’t need the capabilities of even an embedded edition of Windows,
GHI Electronics offers a series of boards with a system processor, a USB host control-
ler, and built-in support for the .NET Micro Framework with .NET classes that sup-
port USB host communications. You can program the boards using the same Visual
Studio software used to develop applications for PCs.

����	
���

�
���

For more about USB host programming with the .NET Micro Framework, see the
Beginners Guide to NETMF and other documentation for the GHI Electronics
NETMF library at ghielectronics.com.

-	.
��	�$
��	��
�
�
�	-���!/���
When developing a USB host system, no matter what hardware and programming
platform you use, a USB protocol analyzer will save you time and trouble. A hard-
ware-based protocol analyzer captures traffic and events on a bus segment and sends
the information to a PC for decoding and displaying.
With this type of analyzer, you don’t need to guess, wonder, or set up other debugging
tools to try to find out what is happening. You can see the contents of every packet
the host and device send. You know if the host sent what you expected and how the
device responded. Monitoring traffic on a conventional host can be a rich source of
clues for developing and debugging host communications for embedded systems.
Hardware-based protocol analyzers are available from multiple sources in a range of
prices.
Software-only analyzers, which run on the host system, can be useful though they can
show only what the host’s drivers see, not transaction-level data on the bus. Chapter 3
shows how to use the ������ software analyzer on Linux systems.

+
�)���	-�������� ��
Perhaps it's heresy to say this in a book about USB hosts, but not every embedded sys-
tem needs USB host capability. Microcontrollers and application processors typically
have a variety of I/O interfaces available. Before you decide to add a USB host port, it
makes sense to decide if your system really needs one.

Many microcontrollers have serial interfaces such as a UART, SPI, and I2C, which can
handle many tasks that require low to moderate throughput. For accessing a network,
on-board Ethernet or wireless-network ports are alternatives. A system that needs to
exchange data with PCs can use a USB device port with an appropriate driver for the
desired task.
With that said, USB hosts are powerful and flexible system components, and periph-
erals with USB ports dominate the market. If your system needs to access peripherals,
chances are good that a USB host is the way to go.

