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This 2-part series first appeared in Circuit Cellar Ink magazine.

Part 1

Using Serial EEPROMs
copyright 1997, 1999 by Jan Axelson

If you have a project that needs a modest amount of nonvolatile, read/write
memory, serial EEPROM may be the answer. These tiny and inexpensive
devices are especially useful when you need to minimize the number of I/O
lines, cost, or physical size.

Probably the most common use for serial EEfigROMs is to store various
types of user data - settings for remote-control devices, phone numbers,
security codes, or anything that used to be set with DIP switches. Other uses
include storing error codes and other diagnostic information, usage records
(times, dates, counts), and instrument readings.

In some cases, serial EEPROMs can even store program code. Parallax’s
Basic Stamp and similar products use serial EEPROMs to store user pro-
grams in the form of BASIC-language tokens.
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This article is a guide to choosing and using serial EEPROMs. I’ll compare
the three major interface types: Microwire, SPI, and I2C, and the pluses and
minuses of using each. Next time, I’ll show how to program and read all
three types from a PC’s standard parallel port.

The Basics
Serial EEPROMs use a synchronous interface - both the EEPROM and the
chip that controls it use a common clock, and clock transitions signal when
to send and read each bit. For example, a sending device may write each bit
on the rising edge of the clock, and the receiving device reads the bit when it
detects the clock’s falling edge.

Although some other synchronous serial chips require minimum clock fre-
quencies, the clock for serial EEPROMs can be as slow as needed, and the
clock signal doesn’t have to be symmetrical. The controlling device can tog-
gle the clock at its convenience, up to the maximum speed. There’s no need
for a fixed timebase

In contrast, in an asynchronous link, as in most RS-232 communications,
both ends of the link must agree on a frequency, and each end provides its
own timebase. When the receiving device detects a Start bit, it uses its own
clock to determine when to read each of the following bits. If the two clocks
vary a lot, the receiving end will misread the data.

Serial EEPROMs typically have just eight pins: power and ground, one or
two data/address lines, and a clock input, plus up to three other control sig-
nals. Unlike parallel EEPROMs, which add pins as the number of address
and data lines grows, a serial EEPROM’s physical size doesn’t have to
increase with capacity. The only alternative that uses less space is when
you’re already using a microcontroller that has EEPROM or nonvolatile
RAM on-chip. But this isn’t always an option, or you may need more stor-
age than the microcontroller has.

Capacities begin at 128 bytes. As with other memory chips, the maximum
capacities available have increased over time: Microchip’s 24LC64 is an
example of an 8-kilobyte chip.
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The EEPROMs use CMOS technology, so they consume very little power,
with currents as low as a few microamps in standby mode and a milliamp
when active.

The synchronous interfaces aren’t intended for use over long distances (for
that, use RS-232 or RS-485), but cables may be as long as 4 meters in some
cases, or longer if you add stronger drivers and buffers.

Depending on the device, the maximum clock speed for accessing serial
EEPROMs can be over 2 Megahertz. But because it takes eight clock cycles
to transfer a byte, and the master also has to send instructions and addresses,
the maximum rate of data transfer is no more than around 4 microseconds
per byte.

Write operations actually take much longer, because the EEPROM needs
several milliseconds to program a byte into its memory array. During this
time, the master can’t read or write to the chip, but it can go on to other
tasks that don’t involve the EEPROM.

With use, EEPROMs eventually lose their ability to store data, so they’re
not suited for applications where the data changes constantly. These days,
most are rated for a minimum of 10 million erase/write cycles, which is fine
for data that changes occasionally, or even every few minutes. (For unlimited
read/write cycles, use battery-backed RAM.)

Besides EEPROMs, other components with synchronous serial interfaces
include A/D and D/A converters, I/O expanders, clock/calendars, and dis-
play interfaces. Multiple devices can connect to one set of lines, with each
chip having its own Chip-Select line or firmware address.

There are three major types of interfaces for serial EEPROMs: Microwire,
SPI, and I2C. These give you plenty of choices, but it also means that a sin-
gle interface and protocol won’t work with everything. The different types
vary in speed, number of signal lines, and other details.

To see how the different interfaces compare, I’ll describe a 4-kilobit
EEPROM of each type. Table 1 summarizes the major features, and Figure 1
shows the pinout of each. All EEPROMs with the same interface behave in a
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similar way, though they may vary in the number of address bits and other
details, such as whether or not there is a write-protect pin. To be sure, always
read the data sheet for the chip you’re using!

Microwire
Microwire is the oldest of the three interfaces. National Semiconductor
introduced it, and other manufacturers now support it as well. National’s
COP888 is an example of a microcontroller with a Microwire interface
built-in. Though it’s commonly called a 3-wire interface, a complete link
actually needs four signal lines plus a common ground.

Microchip’s 93LC66 is a 4-kilobit serial EEPROM with a Microwire inter-
face. It has two data pins: DI (data in) and DO (data out), a clock input
(CLK), and a chip-select (CS). 

Additional inputs are for memory configuration (ORG), which determines
whether data format is 8 or 16 bits, and program enable (PE), which must
be high to program the chip. Setting ORG high saves time because you can
program and read two bytes with one instruction.

The EEPROM understands seven instructions:  Erase/Write Enable and
Disable, Write, Read, Erase, Erase All (sets all bits to 1), and Write All
(writes one byte to all locations).

Figure 1. Pinouts for three 512-byte serial EEPROMs. The SOIC version of
the 93LC66 is available in this and an alternate pinout. On the NM24C03,
pin 7 is Write Protect. (NU = not used, NC = no connection)
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Figure 2 shows the timing for byte read and write operations. Each instruc-
tion must begin with a Start condition, which occurs when CS and DI are
both high on CLK’s rising edge. This occurs naturally when an instruction is
written, because all of the instructions begin with 1. The master must bring
CS low after each instruction, except sequential reads. When CS is high, the
EEPROM is in Standby mode, ignoring all communications until it detects
a new Start condition.

To write to, or program, the EEPROM, the master must first write an
Erase/Write Enable instruction to DI, followed by a Write instruction, the

Table 1. Comparison of Microwire, SPI, and I2C serial EEPROMs
Interface Microwire SPI I2C

Example device 
(512-byte capacity)

93LC66 NM25C04 NM24C04

Source Microchip National Semi National Semi

Minimum number of 
interface (excluding 
GND)

4 4 2

Data width (bits) 8 or 16 8 8

Maximum clock 
speed (Mhz)

2 2.1 0.4

Write (busy) time 
(millisecs., max)

10 5 10

Maximum number of 
bytes programmed in 
one operation

2 4 16

Writes bit on (clock 
state)

rising edge rising edge low level

Reads bit on (clock 
state)

rising edge falling edge low level

Output low current 
(min.)

2.1mA@0.4V 1.6mA@0.4V 3mA@0.4V

Output high current 
(min.)

0.4mA@2.4V 0.8mA@Vcc-0.8V (open collector)

Chip-select method hardware hardware software

Write-protect method software hardware & software none (‘24C03 has 
hardware write-pro-
tect for upper half) 
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master writes bits on CLK’s falling edge, and the EEPROM latches each bit
on the next rising edge.

After sending the final data bit in a programming operation, the master
must bring CS low before the next rising edge of CLK. This causes the
EEPROM to begin its internal programming cycle. (Some devices, such as
Microchip’s 93C76, don’t require CS to go low here; instead, they begin
programming on CLK’s rising edge after D0.) The programming is
self-timed; it requires no clock cycles. If CS returns high before the pro-

Figure 2. Byte read and write operations on a Microwire 93LC66 EEPROM, 
configured for 8-bit organization. CLK’s rising edges latch inputs at DI and clock 
data out at DO.
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gramming cycle completes, D0 will indicate Ready/-Busy status. CS must
then go low again to complete the write operation.

The master needs to send the Erase/Write Enable instruction just once per
programming session. The device remains write-enabled until it receives an
Erase/Write Disable instruction or power is removed.

To read from the EEPROM, the master writes a Read instruction to DI, fol-
lowed by the address to read. When the EEPROM receives the final address
bit, it writes a “dummy zero” to D0, then writes the requested data on
CLK’s rising edges.

If CS remains high after a Read operation, additional clock transitions will
cause the chip to continue to output data at sequential addresses. If CS goes
low, the next read operation must begin with the Read instruction and an
address.

A 2-line interface is sometimes possible by connecting DO and DI. (An iso-
lation resistor between the lines is recommended.) The EEPROM’s DO
output is high impedance except when sending data or busy status. In a
2-line interface, the master’s DI output must also be high impedance when
DO is active. However, there is a brief bus conflict in Read operations, when
the EEPROM outputs the dummy zero on receiving the final address bit,
and the master’s driver must be strong enough to pull the combined DO/DI
line high when this occurs and the address bit is 1.

SPI
The second interface type, SPI (Serial Peripheral Interface), originated at
Motorola, which includes an SPI interface on its 68HC11 and other micro-
controllers. SPI is much like Microwire, though the signal names, polarities,
and other details vary.

Like Microwire, SPI is often referred to as a 3-wire interface, though a
read/write interface actually requires two data lines, a clock, a chip select,
and a common ground.
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The signal names differ on the master and slave devices. The data line
MOSI (master out, slave in) on the master connects to SI on the slave, and
MISO (master in, slave out) on the master connects to SO on the slave. The
clock is called SPICK at the master and SCK at the slave. A Master may also
have four outputs (SS0 through SS3) that each connect to a chip-select
(-CS) on up to four slave devices.

As with Microwire, SPI EEPROMs write bits on the clock’s rising edge, but
unlike Microwire, they latch input bits on the falling edge. (The SPI proto-
col actually allows two different clock polarities, but the EEPROMs support
only clock polarity = 0.)

An SPI device also has a choice of two phases. The EEPROMs support only
clock phase 1, which normally means that the chip-select can remain low if
the interface has only one slave device. On the EEPROMs, however, -CS
still has to toggle to reset the serial logic between instructions, so you can’t
just tie it low. Notice also that the polarity of -CS (active low) is opposite
from Microwire’s convention.

National’s NM25C04 is a 4-kilobit EEPROM with an SPI interface. In
addition to the four lines mentioned above, the chip has two other inputs.
-WP (write protect) must be high to program the device. And for interfaces
with multiple slaves, the -Hold input enables the master to pause in the
middle of a transfer in order to do something more urgent on the SPI link.
The EEPROM ignores all activity on the SPI bus until -Hold returns high
and both devices pick up where they left off.

The EEPROM understands six instructions: Set and Reset the Write Enable
Latch, Read and Write to the Status Register, and Read and Write to the
Memory Array. 

The chip has several levels of write protection, which you can use to virtually
guarantee that there will be no inadvertent writes to the device. If -WP is
low, no changes to the data are allowed. If -WP is high, two nonvolatile bits
in the chip’s Status Register can block writes to all or a portion of the device.
And finally, if -WP is high, before you can write to the Status Register or the
portion of memory enabled in the Status Register, the EEPROM must
receive a Set Write Enable Latch instruction.
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Figure 3 shows the timing for byte reads and writes for the ‘25C04. To write
to the EEPROM, the master writes a Set Write Enable Latch instruction to
SI, followed by a Write instruction (which contains address bit A8), then the
lower eight address bits, then the data to write. The master may send up to
four data bytes for sequential addresses in one operation. After clocking the
final data bit, with SCK low, CS must go high to begin programming the
byte into the EEPROM.

While the EEPROM is programming the data, the master can read the
EEPROM’s Status register. When bit 0 of the Status Register is 0, the
EEPROM has finished programming, and the next write operation can
begin. The chip is write-protected after each programming operation, so
each write must begin with a Set Write Enable Latch instruction.

Figure 3. The NM25C04’s SPI interface is similar to Microwire’s. SCK’s falling 
edges latch inputs at SI, while rising edges clock data out on SO.
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To read the EEPROM, the master sends a Read instruction, which contains
bit A8 of the address to read, then bits A7-A0. The EEPROM responds with
the data bits in sequence on SO. As with Microwire, additional clocks will
cause the EEPROM to send additional data bytes in sequence.

For larger capacities, rather than embedding address bits in instructions, the
master sends a 16-bit address.

I2C
I2C (Inter-Integrated Circuit Bus) is the final interface type. This one origi-
nated with Philips/Signetics, whose 8XC528 (8051 family) is an example of
a microcontroller with an I2C interface built-in.

The I2C interface requires just two signal lines, plus a common ground.
Serial Data/Address (SDA) is a bidirectional line that requires open-collector
or open-drain outputs. Serial Clock (SCL) is the clock. Instead of a
chip-select line, the master sends a slave address on SDA. Figure 4 shows the
timing for I2C transfers.

An I2C bus can have up to about 40 devices, with the limit determined by a
maximum bus capicitance of 400 pF. Each device on the bus can have an
address of up to 7 bits.

The open-collector/open-drain interface means that any logic-low output
will pull SDA low. A device releases the SDA line by writing 1 to its output. 

Unlike Microwire and SPI, which are edge-sensitive, I2C is level-sensitive.
Data and address bits on SDA may change only while SCL is low, and the
receiving device reads bits after SCL goes high.

There are two occasions when SDA changes state while SCL is high. A Start
condition signals the beginning of an operation, and occurs when the master
brings SDA low with SCL high. A Stop condition signals the end of an
operation, and occurs when SDA goes high with SCL high.

Unlike Microwire and SPI, which offer no feedback except the success or
failure of an entire read or write operation, I2C devices send Acknowledge



Serial EEPROMs by Jan Axelson

11

signals after receiving eight bits. After most transmissions, whether an
instruction, address, or data byte, during the ninth clock cycle, the transmit-
ting device releases SDA and the receiving device pulls SDA low to acknowl-
edge that it received the bits. If the master doesn’t see the acknowledge, it
knows that something isn’t right. The receiving device releases SDA on
SCL’s next falling edge.

Figure 4. The NM24C04’s I2C interface uses a single bidirectional signal line.
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An I2C bus can have multiple masters. If more than one master tries to con-
trol the bus at once, an arbitration protocol defined by the I2C standard
determines which one wins.

National Semiconductor’s NM24C04 is a 4-kilobit EEPROM with an I2C
interface. SDA,  SCL, power, and ground use four of the eight pins. Three
other pins are seldom-used page-address inputs (A0, A1, A2). These allow
multiple low-density EEPROMs on a single interface. For example, a link
could have eight 256-byte EEPROMs, each with a different hard-wired page
address. On the ‘24C04, A0 is unused and A1 and A2 can select any of up
to four 512-byte devices. But it’s simpler and cheaper to use a single 2-kilo-
byte chip.

On some EEPROMs (NM24C03), the remaining pin is a hardware
write-protect for the upper half of the memory array.

To write a byte to the EEPROM, the master issues a Start condition, then
writes an 8-bit slave address. The address consists of a 4-bit type identifier
(1010 for EEPROMs), followed by the selected page (000 or 001), and a
request to read (1) or write to (0) the device. 

The type identifier is defined by the I2C standard. The page address is a way
of specifying address bit A8 (0 or 1). The other two bits in the page address
are unused unless there are multiple EEPROMs. In the clock cycle following
the slave address, the EEPROM pulls SDA low to acknowledge.

The master then sends an 8-bit address, and the EEPROM acknowledges.
(When necessary for larger capacities, the master can send two address
bytes.) The master sends the byte to write, waits for an acknowledge, then
issues a stop condition. The EEPROM then programs the data into its
memory array. When programming is complete, the EEPROM acknowl-
edges.

To write to up to 16 bytes to sequential addresses, instead of issuing a Stop
condition after the first data byte, the master may continue to send data
bytes, waiting for an acknowledge after each. After sending all of the bytes,
the master issues the Stop condition, and the EEPROM programs the bytes
and acknowledges. Some I2C EEPROMs (Microchip’s 24LC04) can pro-
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gram all 16 bytes in parallel, for much faster programming. On others, you
can write 16 bytes in sequence, but the chip programs them one at a time.

To read a byte, the master begins as if doing a write operation, sending a
slave address followed by a byte address. When the EEPROM acknowledges
the byte address, the master issues a new Start condition, followed by the
slave address with the final bit set to 1 (read). The slave acknowledges, then
writes the data to SDA. On receiving the data, the master doesn’t acknowl-
edge, but instead issues a Stop condition.

To read sequential addresses, the master acknowledges receiving the data
byte, and the EEPROM responds by sending the next byte in sequence. The
EEPROM will continue to send bytes until it receives a Stop condition
instead of an Acknowledge.

Decisions
Which EEPROM type should you use? Sometimes the choice is obvious, for
example, if you’re using a microcontroller with a built-in interface, or you
want to use a specific A/D converter in the link.

All three types are easily available and inexpensive. Digi-key has 512-byte
devices of each type for under $3 in single quantities.

I2C is best if you have just two signal lines to spare, or if you have a cabled
interface (I2C has the strongest drivers).

If you want a clock faster than 400 kilohertz, use Microwire or SPI.

For more on using serial EEPROMs, I recommend browsing the manufac-
turers’ pages on the web, especially these sites:

National Semiconductor
http://www.national.com/design/
Many application notes on Microwire.

Motorola Semiconductor
http://www.mcu.motsps.com/mc.html
Microcontroller references contain SPI documentation.
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Microchip Technology
http://www.microchip2.com/appnotes/appnotes.htm
Notes on SPI use.

Philips Semiconductor
http://www.semiconductors.philips.com/
I2C information.

Next time, I’ll present the design of an EEPROM programmer that runs
from a PC’s parallel port, with Visual-Basic program code.

Jan Axelson is the author of USB Complete (available 11/99), Serial Port Com-
plete, Parallel Port Complete and The Microcontroller Idea Book. You can reach her
by email at jan@lvr.com, or via her web site at http://www.lvr.com.
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Part 2

Programming Serial 
EEPROMs from a PC’s 
Parallel Port
Copyright 1997, 1999 by Jan Axelson

Serial EEPROMs are popular devices for storing user settings, measurement
data, and other changeable, nonvolatile information. In a typical use, a
microcontroller acts as a master that controls communications with the
EEPROM. Many microcontrollers have built-in ports that are compatible
with the EEPROMs’ synchronous serial interfaces.
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But a microcontroller isn’t the only way to communicate with these devices.
A PC’s parallel printer port is an inexpensive and flexible interface that you
can use for programming and reading serial EEPROMs.

With a parallel-port interface, the only added hardware required is some
generic buffers and drivers and a cable. On the programming side, you can
use any language that enables you to read and write to ports. Software can
emulate all three of the popular synchronous interfaces, and the code is eas-
ily modified when needed to handle device variations.

This article describes circuits and Visual-Basic code for a parallel-port pro-
grammer for serial EEPROMs of each of three interface types: Microwire,
SPI, and I2C. The article builds on the information in my previous article
about serial EEPROMs.

I tested the programmer with a 4-kilobit device of each type. With minimal
modifications, you can use the interfaces and program code to communicate
with just about any serial EEPROM. You can also use the code and circuits
as a starting point for communicating with other chips that use similar
interfaces.

About the Programmer
One drawback of using the parallel port is that it’s software-intensive.  If you
use a microcontroller or expansion card with a built-in interface, the hard-
ware takes care of most of the details of generating the clock and chip-select
signals at appropriate times, dividing each byte to send into bits, and com-
bining received bits back into bytes. If you use the standard parallel port (or
any generic I/O port), you have to do all of this in software.

There are a variety of ways to connect the EEPROMs to the parallel port.
Although many ports now include features for high-speed, bidirectional
communications, every PC’s parallel port can emulate the original port’s
design, with all bits under software control. The signals are eight Data out-
puts (bits 0-7) at the port’s base address, five Status inputs (bits 3 - 7) at base
address + 1, and four Control outputs (bits 0 - 3) at base address + 2.
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I tried several hardware configurations for the programmer. Figure 1 shows
the interface I settled on because it was straightforward and usable on any
PC’s port. Each EEPROM uses two or three of the Data outputs and one
Status input. The Control port and two Status bits are unused. The eight
ground returns in a standard 25-wire parallel cable all connect to signal
ground in the EEPROM circuit.

Circuit construction and cable design aren’t critical. I used an ordinary
10-foot ribbon cable, with the circuits on a solderless breadboard.

Microwire and SPI Interfaces
The interfaces to Microwire and SPI EEPROMs are similar. Each line uses
one of a 74LS244’s buffer/drivers.

The DO and SO outputs aren’t intended for driving long cables; they’re
guaranteed to sink at most a couple of milliamps at 0.4V, so I added a driver

Figure 1. The PC’s parallel port provides a simple interface for communicating 
with serial EEPROMs.
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for each. In the other direction, again because of the cable length, I used
‘244 buffers to add some hysteresis at the EEPROM’s inputs.

The pullup at the Microwire’s DO output is required only if you might try
to read the chip’s Busy status after a programming operation has completed.
You don’t need it if you read the status during a programming cycle, or if
you skip the Busy check entirely and just wait 10 milliseconds to access the
chip after programming it.

The choice of buffer/drivers isn’t critical; a 74HCT244 or similar will work
as well. If your cable is very short, you may get by without any added buffers
or drivers at all.

The ORG, HOLD, and Write-Protect inputs are all tied inactive. If you
want to control these in software, you can connect them to the unused Con-
trol-port outputs.

The I2C Interface
The I2C interface differs because it uses a single, bidirectional data line
(SDA). The EEPROM’s SDA output is open-drain, and the master’s SDA
output must be open-drain or open-collector as well, so that either the mas-
ter or the EEPROM can pull the SDA line low. 

The I2C standard also specifies that SCL’s output should be open-drain, to
enable multiple masters to take turns providing the clock signal. With a sin-
gle master, you can use other output types.

One way to connect the SDA line to a PC’s parallel port is to use one of the
bits of the parallel port’s Control port. On the original PC and most of its
descendants, the Control bits are open-collector, with 4.7K pullups typical
(On many newer ports, for faster switching, the Control outputs switch to
push-pull type when the port is configured for a high-speed (EPP or ECP)
mode, but revert to open-drain when emulating the original port.)

But there are a few ports that don’t have the open-collector/open-drain out-
puts, so I decided not to assume that these would be available. Instead, as
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with the other interfaces, I used a Data output and a Status input. SDA’s
input buffer is a 7407 open-collector driver with a 4.7K pullup.

When the PC is writing data, addresses, or instructions to the EEPROM,
SDA’s output is off and SDA follows bit D6. During Read operations, D6
must be high, to enable SDA to control S5.

You can use just about any LSTTL or HCTMOS driver/buffers at S5 and
D7 (SCL). I used the 7407s only because I was already using the chip and
had the extra drivers. And of course, if you don’t use open-collec-
tor/open-drain devices for these, you don’t need the pullups.

If you decide to use one of the parallel port’s Control bits to communicate
with SDA, be aware that bits 0, 1, and 3 in the parallel port’s Control regis-
ter read the inverse of the logic state at the connector. If you use one of these
bits, remember to use inverting buffer/drivers or invert the bit in software.

Using the Programmer
Figure 2 shows the user screen for the programmer application. I created the
software with Visual Basic 4, and it will load and run in either the 16-bit or
32-bit edition of VB4, under Windows 3.1 or Windows 95. (It won’t run
under NT, which requires a kernel-mode driver for port accesses. If you have
a driver for port I/O under NT, you can modify this program’s routines for
use with it.)

The complete program code is available on my web site at
http://www.lvr.com and on the Circuit Cellar Ink BBS and web site.

A drop-down list box allows users to select any of the three most common
base addresses for parallel ports (378h, 278h, 3BCh). You can use other
addresses by adding them to the list box’s code.

The application will program and read individual bytes, or files. To program
a byte, you select the EEPROM type, enter the byte and an address in the
text boxes, and click on the corresponding Program command button.
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Figure 2. With this Visual-Basic program and Figure 1’s circuit, you can read and 
program Microwire, SPI, and I2C serial EEPROMs.
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After programming, the software reads the EEPROM’s status, waiting for it
to return a “not busy.”  The text box at the bottom of the window tells you
when the programming operation is completed, or that the programming
operation has timed out without receiving the expected response from the
EEPROM. If the file to program is longer than 512 bytes, the software pro-
grams the first 512 bytes.

To read a byte from an EEPROM, you select the EEPROM type, enter an
address in the text box, and click on the corresponding Read command but-
ton. The program reads the requested byte and displays it in the text box. If
it’s an I2C interface and the software doesn’t receive the expected Acknowl-
edge signals, the read operation times out and displays a message. The
Microwire and SPI interfaces have no timeout for read operations, because
the EEPROMs don’t send any acknowledges.

To program the contents of a file into an EEPROM, or to write the contents
of an EEPROM into a file, use the File Program and File Read command
buttons. Each brings up a Common Dialog box that enables you to select a
file to read or write to.

A completed programming operation doesn’t guarantee success. To verify,
read the byte(s) back and compare with the original.

Accessing Ports
The first challenge to accessing the parallel port in Visual Basic is that VB
doesn’t include BASIC’s usual Inp and Out for accessing I/O ports. A solu-
tion is to use an “Inpout” DLL (dynamic linked library) that adds these rou-
tines to VB. The DLL reads and writes directly to the selected port.

The EEPROM programmer will use either of two DLLs, depending on
whether the program is running under the 16-bit or 32-bit edition of VB.
As with all DLLs, the DLL itself must be present on the system running the
program, and the program must declare the routines it calls.

The syntax for using the DLL’s Inp and Out is the same as in QuickBasic:

ByteRead = Inp(PortAddress)
Out PortAddress, ByteToWrite
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VB also allows this alternate syntax for Out:
Call Out (PortAddress, ByteToWrite)

Another option for accessing ports under Windows 3.x or 95 is to use a
VxD (virtual device driver), which enables an application to block port
accesses from unauthorized sources. A VxD has other benefits as well, such
as the ability to respond more quickly and to use system features like DMA.

But both Windows 3.x and 95 allow direct port reads and writes as long as
another driver hasn’t blocked access to the port. If other applications have
no need to use the port, and if you don’t need to use a VxD for other rea-
sons, direct I/O is a quick and inexpensive solution.

Inside the Software
The program itself consists of many short routines. One set handles the user
interface, including reading the option buttons and text boxes and respond-
ing to button clicks. Other routines handle tasks common to all three
EEPROM types, such as extracting a bit from a byte and displaying timeout
messages. And for each EEPROM type, a set of routines sends instructions,
addresses, and data, and reads data in the required format.

I designed the program to work with an example 512-byte EEPROM of
each type. With  modifications, you can use it with EEPROMs of other
capacities, or make other changes a specific device may require.

Listing 1 shows the routines for writing and reading one bit with each type
of EEPROM. For each EEPROM signal, I defined a constant equal to the
signal’s bit number at the parallel port. If you want to use different bit
assignments, just change the constants to match.

To keep the software as flexible and easy to understand as possible,  I
designed the code so that individual bits in a byte can be changed without
having to keep track of the states of all of the others. A form variable
(DataOut) holds the last value written to the Data port, and a BitWrite
function sets or clears a selected bit in a byte. To toggle a bit at the Data
port, the code first sets or clears the desired bit in DataOut, then writes the
result to the port.
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A challenge in getting this software working was that the serial links don’t
provide much in the way of feedback. The only way to know if a byte pro-
grammed successfully is to write the byte and read it back. If it doesn’t verify,
there’s no way to know if the problem was in the programming or read oper-
ation. A single missing or extra clock pulse, or a mistake in an instruction or
address means that the intended operation won’t complete. 

I2C does send an Acknowledge to let the master know when the EEPROM
has received something. Even here, the master may read (logic-low) Acks
when none have been sent (if the circuits aren’t powered up, for example).
So only a successful verify, not the lack of an error message, indicates a suc-
cess.

The good news is that with all three interfaces, you can toggle the clock as
slowly as you want. To troubleshoot, I single-stepped through the routines
and verified that each signal was doing what I expected at each step.

Listing 2 shows routines for writing Read instructions to each EEPROM
type. Again, nothing is automatic. The software has to provide all of the
clock transitions and write each bit of the instructions and data at appropri-
ate times.

Modifications and Enhancements
Although the program is functional as it stands, chances are that you’ll want
to make changes and enhancements, such as the ability to use other
EEPROM sizes or the addition of instructions such as Erase All. Other
enhancements might include saving of program settings such as default
EEPROM types and file directories, and more robust error-checking.

Jan Axelson is the author of USB Complete (available 11/99), Serial Port Cmplete,
Parallel Port Complete and The Microcontroller Idea Book. You can reach her by
email at jan@lvr.com, or via her web site at http://www.lvr.com.
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Listing 1. Each serial-EEPROM type uses a different protocol for sending
and receiving bits. When using the PC’s parallel port to communicate with
the EEPROM, the software has to provide the clock transitions at appropri-
ate times. These routines write bits to the EEPROMs.

‘Bit numbers of output signals at the parallel port’s Data port.

‘MW (Microwire):
Const DIn = 0
Const CLK = 1
Const CS = 2

‘SPI:
Const SI = 3
Const SCK = 4
Const nCS = 5

‘I2C (no hardware chip-select):
Const SDAout = 6
Const SCL = 7

‘Bit numbers of input signals at the parallel port’s Status port.

‘MW:
Const DOut = 3

‘SPI:
Const SO = 4

‘I2C:
Const SDAIn = 5

Private Sub I2CWriteBit(BitToWrite%)
‘Write the bit with SCL=0,
‘then bring SCL high to latch the bit into the EEPROM.

DataToWrite = fncBitWrite(DataToWrite, SCL, 0)
Out OutputPortAddress, DataToWrite

DataToWrite = fncBitWrite(DataToWrite, SDAIn, BitToWrite)
Out OutputPortAddress, DataToWrite
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DataToWrite = fncBitWrite(DataToWrite, SCL, 1)
Out OutputPortAddress, DataToWrite

End Sub

Private Sub MWWriteBit(BitToWrite%)
‘Write the bit on CLK’s falling edge,
‘then bring CLK high to latch the data into the EEPROM.

DataToWrite = fncBitWrite(DataToWrite, DIn, BitToWrite)
DataToWrite = fncBitWrite(DataToWrite, CLK, 0)
Out OutputPortAddress, DataToWrite

DataToWrite = fncBitWrite(DataToWrite, CLK, 1)
Out OutputPortAddress, DataToWrite

End Sub

Private Sub SPIWriteBit(BitToWrite%)
‘Write the bit on SCK’s rising edge,
‘then bring SCK low to latch the data into the EEPROM.

DataToWrite = fncBitWrite(DataToWrite, SI, BitToWrite)
DataToWrite = fncBitWrite(DataToWrite, SCK, 1)
Out OutputPortAddress, DataToWrite

DataToWrite = fncBitWrite(DataToWrite, SCK, 0)
Out OutputPortAddress, DataToWrite

End Sub
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Listing 2. Each EEPROM type responds to a small instruction set. The rou-
tines below send a Read instruction to the EEPROM. The instruction is fol-
lowed by the address to read, and the EEPROM responds with the
requested data. The I2C and SPI instructions include address bit 8, while the
Microwire instruction sends all nine bits following the instruction.

Private Sub I2CSendReadInstruction(A8%)
‘The read instruction consists of the device identifier (1010),
‘two don’t cares, address bit 8, and 1 (Read).

Call I2CIssueStartCondition
Call I2CWriteBit (1)
Call I2CWriteBit (0)
Call I2CWriteBit (1)
Call I2CWriteBit (0)
Call I2CWriteBit (0)
Call I2CWriteBit (0)
Call I2CWriteBit (A8)
Call I2CWriteBit (1)
Call I2CWaitForAck

End Sub

Private Sub MWSendReadInstruction()
‘Sends the Start bit (1) and Read instruction (1,0):

Call MWWriteBit(1)
Call MWWriteBit(1)
Call MWWriteBit(0)

End Sub

Private Sub SPISendReadInstruction(A8%)
‘Sends the Read Instruction:

Call SPIWriteBit(0)
Call SPIWriteBit(0)
Call SPIWriteBit(0)
Call SPIWriteBit(0)
Call SPIWriteBit(A8)
Call SPIWriteBit(0)
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Call SPIWriteBit(1)
Call SPIWriteBit(1)

End Sub


