
 © Copyright 2001 Moto Development Group, All Rights Reserved

USB to Serial
Reference Design

MO1002Moto Development Group
85 Second Street
San Francisco, CA 94105

Rev 3.0 04/11/01
Product Overview

The MO1002 is a HID compliant, bi-directional USB to Universal Asynchronous Serial
Receiver/Transmitter (UART) solution. Devices that currently employ asynchronous serial
communications can be connected to a USB host without a major redesign of the
hardware. While USB to UART solutions currently exist, the MO1002 is lower cost and
uses proven driver technology from Microsoft®.

For more information contact Ben Knapp at MOTO at (415) 281-4800 or visit our web site
at www.moto.com/usb.

Features Benefits
• Rates From 2400 To 57.6 kbps • Lowest Cost Solution Available

• USB 1.1 Compliant • Xon/Xoff Software Flow Control

• All Necessary Firmware Included • Hardware Flow Control

• Small Footprint (24 lead QSOP Package
available)

• Uses USB Human Interface Device driver
which is not operating system-specific

CY7C63001Serial Device 57.6kBaud

Windows '98 or Windows 2000 PC

USB 1.1

 © Copyright 2001 Moto Development Group, All Rights Reserved

Schematic

 © Copyright 2001 Moto Development Group, All Rights Reserved

Bill of Materials

Item Quantity Reference Part Rating Tol Footprint Supplier Partnumber
1 1 C1 4.7uF 16V _20% CAP4X7 Panasonic ECE-A1CKA100
2 2 C2 0.1uF 50V _20% CAP Philips A104Z15Z5UFVVWN
3 1 R1 7.5K _1/8W _1% RES
4 1 U1 CY7C63001A SOIC or

DIP or
QSOP

Cypress CY7C63001A-SC or
CY7C63001A-PC or

CY7C63101A-QC
5 1 Y1 6MHz CRES Murata

 © Copyright 2001 Moto Development Group, All Rights Reserved

Developer Notes

FEATURES
• Comes out of reset at default baud rate of 9600
• Six discrete baud rates can be set using host software (2400, 4800, 9600, 19200, 38400, 57600)
• Hardware flow control. The device will signal when its receive buffer (60 bytes) is full.

LIMITATIONS
• Half duplex only. Device cannot transmit and receive at the same time. If the host directs the

device to transmit, incoming (received serial data) will be ignored.

UNCERTAINTIES
• Low power suspend. MOTO found it necessary to rework the low power suspend functionality. It

hasn’t been tested recently, but it ought to work.
• If the device is receiving a serial character and the host starts sending control transfers (to either

adjust the baud rate or to cause characters to be transmitted) the character being received may
be abandoned.

BUILDING
Firmware
The firmware is assembled using Cypress Semiconductor’s CYASM.EXE program. The latest
version of the assembler is available free from Cypress at www.cypress.com.

In order to get started quickly, you’ll want to contact Cypress about their CY3649 Hi-Lo Programmer
for the CY7C63xxx series of devices.

To assemble the source, type CYASM HIDUART. HIDUART.ASM is the main source file which
includes all the others. As released by MOTO, the source generates no errors or warnings. The
output file is in HEX format, and is named HIDUART.HEX.

Software
The HIDUART terminal program can be built using Visual C++ 5.0. Other compilers have not been
tested

USAGE OF VENDOR ID, PRODUCT ID, AND DEVICE ID
The source uses MOTO’s vendor ID (0x0C04) and a product ID of 0x0100.

These Vendor and Product ID values belong to MOTO Development Group. If you use MOTO's
vendor ID you may use PID 0x0100 only AND you may NOT use version (aka device ID) 0100 or
lower. If you choose this path your product must be differentiated by its device ID only. Your
application must test for vendor then product then device ID before it attaches to the HID device. See
the example HIDUART.EXE source. If you want your own product ID MOTO may be willing to sell
one of ours. Otherwise, USB.ORG is the sole broker of vendor IDs.

Further, all of the above is true only insofar as it is not in contravention of MOTO's obligations as a
member of the USB Implementors Forum.

FIRMWARE THEORY OF OPERATION
Human Interface Device (HID) Class of USB Devices
Developing USB device drivers is non-trivial. Using the existing Microsoft HID class driver eliminates
the driver development work, but it puts requirements on the firmware to “speak HID.” Fortunately,
Cypress’ “firmware frameworks” (for the CY7C63x0x parts) implements a HID interface. MOTO added
the UART functionality to the frameworks.

 © Copyright 2001 Moto Development Group, All Rights Reserved

Serial Transmit Mechanism
The host sends a HID Set Report of type RID_TRANSMIT. The data in this report is pushed out the
TX pin of the device as asynchronous serial data at the set bit rate. SerialTransmitByte does the
work in this case.

Serial Receive Mechanism
SerialReceiveByte is the routine that assembles incoming bytes. It is called in the event of a negative
edge triggered GPIO interrupt. The start bit of the serial byte causes this interrupt. The routine
maintains control until the whole byte is collected. Each bit is sampled only once, at roughly the
center of the bit. There is no parity checking. A return from interrupt is executed at the completion of
this routine.

The value of POLLING_INTERVAL controls how often the host PC sends down "INTERRUPT IN"
tokens. The firmware can only send data up to the host in response to an INTERRUPT IN token, so
this is a direct control of the UART receive capability of the device. If the polling is too infrequent your
UART receive buffer will overflow because it can't send data up to the host quickly enough. If it is too
frequent you may cause problems with other USB devices.

Now, most HID devices put 10 here, to indicate "poll me every 10 milliseconds" for new data. In fact,
when you put 10 or values near 10 here Windows will poll the device every 8 milliseconds. Further,
you can put values as low as 1 millisecond in here and it still works in our limited testing. Devices are
not supposed to use numbers less than 10 because they chew up USB bandwidth, but using ‘1’ does
successfully transfer data at a steady clip of 7000 bytes / second (56000 bps). In that case the
device can receive data at 57600 baud and will rarely issue a flow control signal.

Baud Rate
The baud rate comes up at a default rate as defined in the file ram.inc, in the constant
BAUD_BITDELAY_DEFAULT. This value lies in the baud select table in hiduart.asm at the label
“baud_table.”

A special Set Report is defined to change the baud rate to one of the values in this table.

Timing the signals with an oscilloscope it can be seen that the bit durations are slightly wrong. The
firmware was written to operate at 57600 bps using very simple UART code. From there, the best
available values for bit delay times were found to create the other baud rates. There is no doubt that
the code could be re-written to achieve more accurate results at any particular baud rate at the
expense of being able to do many baud rates well. Further, all baud rates could be done more
precisely with separate code to handle each rate. Fortunately the performance as the design exists
appears to be reliable.

HIDUART Asynchronous Serial Baud Rate Generation (TX)
Times are in microseconds

Actual
Rate Ideal start bit high data bit low data bit
2400 416.67 412.8 414.2 413.5
4800 208.33 204.5 205.8 205.8
9600 104.17 101.4 102.7 102.4

19200 52.08 49.8 51.05 50.9
38400 26.04 24.02 25.33 25.08
57600 17.36 16.08 17.4 17.16

