The
Microcontroller Idea Book

Circuits, Programs, & Applications
featuring the 8052-BASIC Microcontroller

Jan Axelson

Lakeview Research
Madison, WI

copyright 1994, 1997 by Jan Axelson
Published by Lakeview Research
14 13 12 11 10 9 8 7 6 5 4

L akeview Research

5310 Chinook Ln.
Madison, WI 53704

USA

Phone: 608-241-5824

Fax: 608-241-5848

Email: jaxel son@lvr.com
WWW: http://www/Ivr.com

No part of this book, except the programs and program listings, may be reproduced in any
form, or stored in a database or retrieval system, or transmitted or distributed in any form,
by any means, electronic, mechanical photocopying, recording, or otherwise, without the
prior written permission of Lakeview Research or the author, except as permitted by the
Copyright Act of 1976. The programs and program listings, or any portion of these, may be
stored and executed in a computer system and may be incorporated into computer programs
developed by the reader.

Trademarks

Macintosh is aregistered trademark of Apple Computer. Procomm Plus and Datastorm are
registered trademarks of Datastorm Technologies, Inc. VT100 is aregistered trademark of
Digital Equipment Corporation. IBM is a registered trademark of International Business
Machines Corporation. MCS-BASIC-52 and Intel areregistered trademarks of Intel Corpo-
ration. Microsoft, MS-DOS, GW-BASIC, and Microsoft Windowsareregistered trademarks
of Microsoft Corporation. Philips is aregistered trademark of Philips International BV.

The author and publisher have used their best efforts in preparing this book and the
materialsinit. Theauthor built and tested the el ectronic circuitsdescribed, ranand tested
the computer programs presented, and reviewed all materials for completeness and
accuracy. The author and publisher make no warranty with regard to the circuit
schematics, programlistings, and other materialsin thisbook. The author and publisher
take no responsibility for any damages resulting fromany use of the material in this book.

ISBN 0-9650819-0-7

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Table of Contents

Microcontroller Basics
What’'s a Microcontroller? 1
A Little History 2

New Tools 3

Project Steps 4

Insidethe 8052-BASIC

Possibilities 11

Limits 13

What You Need 14

The 8051 Family 16

Elements of the 8052 and 8052-BASIC 17

Powering Up

About the Circuit 23
Circuit Construction 30
Powering Up 35

Basic Tests 38

Simple Programsto Try 40
Exiting Programs 44

Saving Programs

Nonvolatile Memory Options 47
Adding NVRAM or EEPROM 50
Using the Programming Commands 53
Adding Bootup Options 54

23

a7

Erasing NV Memory 55

Adding more NVRAM or EEPROM 56
Adding EPROM 56
EPROM-programming Circuits 57
Power Supplies for Programming 61
Storing Programs on Disk 63

Chapter 5 Programming 65
Programming Basics 65
BASIC-52 Bugs and Things to Watch Out For 69
Finding Program Errors 70
BASIC-52 Keywords by Function 72
Quick Referenceto BASIC-52 74

Chapter 6 Inputsand Outputs 87
TheMemory Map 87
Usesfor I/O Ports 89
Adding Ports 89
The 8255 Programmable Periphera Interface 98

Chapter 7 Switchesand Keypads 109

Simple Switches 109
Adding aKeypad 116

Chapter 8 Displays 125
Using LEDs 125
7-segment Displays 129
Displaying Messages 138
Inside the Display Controller 140
Mounting Displaysin an Enclosure 152

Chapter 9 Using Sensorsto Detect and Measure 153
Sensor Basics 153
Choosing Sensors 154
On/off Sensors 155
Analog Sensors 156
Sensor Examples 163
Level Trandating 167
Choosing a Converter 169

Chapter 10 Clocksand Calendars 171

BASIC-52's Real-time Clock 171
A Watchdog Timekeeper 174

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Appendix A

Control Circuits

Switching Power to aLoad 185

Controlling a Switch Matrix 187

Op Amp with Programmable Gain 189
Controlling a Stepper Motor 191

Speed Control of a Continuous DC Motor 195

WirdessLinks
Infrared Links 199

Increasing the Distance 212
Radio Links 216

Calling Assembly-language Routines
Assembly-language Basics 218

What You Need 218

Loading aRoutine 221

File Formats for Assembly-language Routines 222
Assembling aProgram 224

Uploading a Program 225

Example: Creating a Sine Wave 227

Avoiding Program Crashes 231

Interrupts 232

Adding Custom Commands and Instructions 233
A Genera-purpose EPROM Programmer 237

Running BASI C-52 from External Memory
Reasons 239

Copying BASIC-52 240

System Requirements 241

Storing BASIC-52 Programs 243

Related Products

Enhanced BASIC-52 245
BASIC Compilers 246
Programming Environments 247
Pc Boards 248

BASIC-52 Source Code 250

Sources

Books 251

BBS's 254

Product Vendors 255

185

199

217

239

245

251

Appendix B Programsfor Loading Files 263

Appendix C Number Systems 271

About Number Systems 271
Kilobytes and Megabytes 273

Vi

Introduction

Introduction

This book is a hands-on guide to designing, building, and testing microcontroller-based
devices. Microcontrollers, or single-chip computers, are ideal for projects that require
computer intelligence, but don’t need the overhead of a complete personal computer with
disk drives, keyboard, and full-screen display.

Why the 8052-BASIC?

This book focuses on the 8052-BA SIC microcontroller, which is easy to use, full featured,
and inexpensive to work with. The on-chip BASIC-52 programming language enables you
to write, run, and test your programs quickly. With over 100 commands, instructions, and
operators, BASIC-52ismore capable than other microcontroller BASI Cs. And, asamember
of the 8051 microcontroller family, the 8052-BA SIC has a standard, popular architecture.

The ideas and applications presented here are not limited to the 8052-BASIC, however. If
your favorite chip is a different one, you can adapt the circuits and programs to it. The
schematics and program listings in this book include comments and explanations to help
you apply the ideas, whether or not you are using the 8052-BASIC.

Vil

Introduction

What'’s Inside?

Thisis not just a textbook that presents information but glosses over the details of how to
apply it. Inside, you'll find practical information, including the following:

e Complete circuit schematics and parts lists—so you can easily build the circuits
yourself.

¢ Design theory—for example, why use this particular component? or how can | expand
or modify the circuit shown?

¢ Example program listings—for easy testing and use of the circuits.

e Construction and debugging tips—to help you get the circuits up and running without
problems.

The appendices include a complete list of sources to help you find the components and
additional information you need for your projects.

Because microcontroller projectsinvolve both circuit design and programming, | cover both
the hardware and software aspects. The book begins with an introduction to microcontrol -
lers, and to the 8052-BASIC chip in particular. Next are basic circuits to get you started
programming and interfacing to the chip, along with the reasons behind the component and
design choices, and construction details for prototyping. To the basic circuits, | show how
to add switches, keypads, displays, and other input/output interfaces.

A programming reference describes each of BASIC-52's keywords, with specific tips for
trouble-free programming in BASIC-52.

You'll also find out how to add these to your system:
e Sensors, for detecting detect and measuring physical properties.

¢ Clock/calendar functions, for keeping track of seconds, minutes, hours, days, months,
and years, and to trigger alarms at particular times.

e Control of AC power, switch matrices, stepper and continuous motors, and gain of an
op amp.

¢ Programmable wireless links, for situations where stringing wiresisn’t practical or
convenient.

Viii

Introduction

A chapter on assembly-languageinterfacing showshow to add assembly-language programs
for faster program execution, how to add your own commands the BASIC-52 programming
language, and how to use the 8052-BASIC as a development system for an all-assembly-
language project.

The final chapters cover other options for 8052-BASIC systems, including how to store
BASIC-52 in external memory rather than in the 8052’s internal ROM, and a review of
related products, including BASIC compilers, 8052-BASIC circuit boards, and devel opment
software for more convenient and possibly cheaper project development.

Your Feedback Is Welcome

This book is the result of requests from readers of my articles in Computer Craft magazine
and its successor, The MicroComputer Journal. I’ veexpanded the coverage of several topics,
including programming of EPROMs and other devices, display options, sensors, and
programming tips.

Thanksto everyone who responded to my articles with comments, questions, criticisms, and
suggestions, and who, in doing so, hel ped to makethisbook asuseful asit can be. Asaways,
| welcome your comments on this work.

Jan Axelson
10-94

Introduction

Microcontroller Basics

1

Microcontroller Basics

This chapter introduces you to the world of microcontrollers, including definitions, some
history, and a summary of what’s involved in designing and building a microcontroller
project.

What’s a Microcontroller?

A microcontroller is a computer-on-a-chip, or, if you prefer, a single-chip computer. Micro
suggests that the device is small, and controller tells you that the device might be used to
control objects, processes, or events. Another term to describe amicrocontroller isembedded
controller, because the microcontroller and its support circuits are often built into, or
embedded in, the devices they control.

You can find microcontrollersin all kinds of things these days. Any device that measures,
stores, controls, calculates, or displays information is a candidate for putting a microcon-
trollerinside. Thelargest single usefor microcontrollersisin automobiles—just about every
car manufactured today includes at least one microcontroller for engine control, and often
more to control additional systemsin the car. In desktop computers, you can find microcon-
trollers inside keyboards, modems, printers, and other peripherals. In test equipment,
microcontrollers make it easy to add features such as the ability to store measurements, to
create and store user routines, and to display messages and waveforms. Consumer products
that use microcontrollers include cameras, video recorders, compact-disk players, and
ovens. And these are just afew examples.

The Microcontroller Idea Book 1

Chapter 1

A microcontroller issimilar to the microprocessor inside apersonal computer. Examples of
microprocessors include Intel’s 8086, Motorola's 68000, and Zilog's Z80. Both microproc-
essors and microcontrollers contain a central processing unit, or CPU. The CPU executes
instructions that perform the basic logic, math, and data-moving functions of a computer.
To make a complete computer, a microprocessor requires memory for storing data and
programs, and input/output (1/O) interfaces for connecting external devices like keyboards
and displays.

In contrast, amicrocontroller isasingle-chip computer becauseit contains memory and 1/0
interfacesin addition to the CPU. Because the amount of memory and interfacesthat can fit
on asingle chip islimited, microcontrollers tend to be used in smaller systems that require
little more than the microcontroller and a few support components. Examples of popular
microcontrollers are Intel’s 8052 (including the 8052-BASIC, which is the focus of this
book), Motorola’'s 68HC11, and Zilog's Z8.

A Little History

To understand how microcontrollersfit into the always-expanding world of computers, we
need to look back to the roots of microcomputing.

Inits January 1975 issue, Popular Electronics magazine featured an article describing the
Altair 8800 computer, which was the first microcomputer that hobbyists could build and
program themselves. The basic Altair included no keyboard, video display, disk drives, or
other elements we now think of as essential elements of a persona computer. Its 8080
microprocessor was programmed by flipping toggle switches on the front panel. Standard
RAM was 256 bytes and a kit version cost $397 ($498 assembled). A breakthrough in the
Altair’'s usability occurred when a small company called Microsoft offered aversion of the
BASIC programming language for it.

Of course, the computer world has changed a lot since the introduction of the Altair.
Microsoft has become an enormous software publisher, and a typical personal computer
now includes akeyboard, video display, disk drives, and Megabytes of RAM. What’smore,
there’sno longer any need to build apersonal computer from scratch, since mass production
has drastically lowered the price of assembled systems. At most, building a persona
computer now involves only installing assembled boards and other major componentsin an
enclosure.

A personal computer like Apple’'s Macintosh or IBM’s PC is a general-purpose machine,
since you can use it for many applications—word processing, spreadsheets, computer-aided
design, and more—just by loading the appropriate software from disk into memory.
Interfaces to personal computers are for the most part standard ones like those to video
displays, keyboards, and printers.

2 The Microcontroller [Idea Book

Microcontroller Basics

But along with cheap, powerful, and versatile personal computers has developed a new
interest in small, customized computers for specific uses. Each of these small computersis
dedicated to one task, or a set of closely related tasks. Adding computer power to adevice
can enable it to do more, or do it faster, better, or more cheaply. For example, automobile
engine controllers have helped to reduce harmful exhaust emissions. And microcontrollers
insde computer modems have made it easy to add features and abilities beyond the basic
computer-to-phone-line interface.

In addition to their use in mass-produced products like these, it's also become feasible to
design computer power into one-of-a-kind projects, such as an environmental controller for
ascientific study or an intelligent test fixture that ensuresthat a product meetsits specifica-
tions beforeit’s shipped to a customer.

At the core of many of these specialized computers is a microcontroller. The computer’s
program is typically stored permanently in semiconductor memory such as ROM or
EPROM. The interfaces between the microcontroller and the outside world vary with the
application, and may include asmall display, akeypad or switches, sensors, relays, motors,
and so on.

These small, specia-purpose computers are sometimes called single-board computers, or
SBCs. The term can be miseading, however, since the computer doesn’t have to be on a
single circuit board, and many types of computer systems, such as laptop and notebook
computers, are now manufactured on a single board.

New Tools

To design and build acomputer-controlled device, you need skillsin both circuit design and
software programming. The good news s that a couple of recent advances have simplified
the tasks involved.

Oneistheintroduction of microcontrollersthemselves, sincethey contain all of theelements
of a computer on a single chip. Using a microcontroller can reduce the number of
components and thus the amount of design work and wiring required for a project. The
8052-BASIC microcontroller even includesits own programming language, called BASIC-
52.

The other development is personal computers themselves. A desktop computer can help
tremendously by serving as a host system for writing and testing programs. As you are
developing aproject, you can use aserial link to connect the host system to atarget system,
which contains the microcontroller circuits you are testing. You can then use the personal
computer’skeyboard, video display, disk drives, and other resourcesfor writing and testing
programs and transferring files between the two systems.

The Microcontroller Idea Book 3

Chapter 1

Project Steps

Putting together a microcontroller project involves severa steps:

1. Define the task

2. Design and build the circuits
3. Write the control program

4. Test and debug

Sometimesthe stepswon'’t follow exactly inthisorder. You may begin writing your program
before you build the circuits, or you may build and test some of the circuits before you start
programming. But however you go about it, each of the above stepsis part of the process.
To seewhat’s involved in each step, let’slook at each in more detail.

Defining the Task

Every project begins with an idea, or a problem that needs a solution. For example, How
can | monitor light intensity at different locations and times of day to find the best location
for a solar collector? Or how can | automate the process of drilling printed-circuit boards?
Or how can | create a computer-controlled, animated display for a store window?

Once you know what you want to accomplish, you need to determine whether or not your
ideais one that requires a computer at al. In general, acomputer isthe way to go when the
circuits must make complex decisions or deal with complex data. For example, a simple
AND gate can easily decide whether or not two inputs are both valid logic highs, and will
change its output accordingly. But it would require many small-scale chipsto build acircuit
that stores a series of values representing sensor outputs and the times they occurred, and
displays the information in an easily understandable form.

This type of application is where microcontrollers come in handy. Inside, microcontrollers
are little more than a carefully designed array of logic gates and memory cells, but modern
fabrication processes allow thousands of these to fit on a single chip. Since the basic
functions of a microcontroller—performing arithmetic, logic, data-moving, and program
branching functions—are common ones that are useful in many applications, it’s practical
to design and market a chip that performs these functions. The user accesses the abilities of
the microcontroller by writing a program that performs the desired functions.

On the other end of the scale, how do you know if an ideais suitable for a microcontroller,
or whether you should use a full desktop computer? If your design requires users to enter
or view complex commands, data, or graphical information, or if you need large amounts
of dataor program storage, then asystem with keyboard, full-screen display, and disk drives

4 The Microcontroller [Idea Book

Microcontroller Basics

makes sense. For ssimpler designs, a microcontroller with perhaps a keypad, small display,
and solid-state memory (no disk drives) can often do the job, with less expense and smaller
size.

In fact, recently the two extremes have been meeting. Some 32-bit microcontrollers are as
capable as desktop systems, and notebook-size computers are available with solid-state,
diskless storage. Also, expansion cards, other hardware, and software are now available for
those who want to use desktop computers for monitoring and control tasks. So there’'s
something for everyone.

The 8052-BASIC chip described in this book is perfect for many simpler applications,
especially control and monitoring tasks. Because the chip is easy to use, it's agood way to
learn about microcontrollers and computers in general. Although you can’t do the most
complex projects with it, you can do alot, at low cost and without alot of hasse.

Designing and Building

When you're ready to design and build the circuits for a project, there are several ways to
proceed. You can design your circuits from scratch, using manufacturers' data books as
guides; you canfollow atested design (akit or project presented in amagazinefor example);
or you can buy an assembled single-board computer, adding only the interfaces and
programming your application requires. This book presents designs that you can build
yourself, but you can also use akit or assembled board as abase if you wish.

Choosing a chip. Does it matter which microcontroller chip you use? All microcontrollers
contain a CPU, and chances are that you can use any of several devicesfor aspecific project.

Within each device family, you'll usually find a selection of family members, each with
different combinations of options. For example, the 8052-BASIC is a member of the 8051
family of microcontrollers, whichincludeschipswith program memory in ROM or EPROM,
and with varying amounts of RAM and other features. You select the version that best suits
your system’s requirements.

Microcontrollers are a so characterized by how many bits of datathey process at once, with
a higher number of bits generally indicating afaster or more powerful chip. Eight-bit chips
are popular for simpler designs, but 4-bit, 16-bit, and 32-bit architectures are also available.
The 8052-BASIC is an 8-hit chip.

Power consumption isanother consideration, especially for battery-powered systems. Chips
manufactured with CMOS processes usually have lower power consumption than those
manufactured with NM OS processes. Many CM OS devices have special standby or “deep”
modes that limit current consumption to as low as afew microamperes when the circuits are

The Microcontroller Idea Book 5

Chapter 1

inactive. Using these modes, a data logger can reduce its power consumption between
samples, and power up only when it’stime to take data.

The 8052-BASIC chip is available in both NMOS and CMOS versions. The original
8052-BASIC was an NMOS chip, offered directly from Intel. (Intel’s term for its NMOS
process is HMOS.) Although Intel never offered a CMOS version directly, Micromint
became a source by ordering a batch of CMOS 8052’s with the BASIC-52 programming
language in ROM. The CMOS version, the 80C52-BASIC, has maximum power consump-
tion of 30 milliamperes, compared to 175 milliamperes for the NMOS 8052-BASIC.

All microcontrollers have a defined instruction set, which consists of the binary words that
causethe CPU to carry out specific operations. For example, the instruction 0010 0110 tells
an 8052 to add the values in two locations. The binary instructions are also known as
operation codes, or opcodes for short. The opcodes perform basic functions like adding,
subtracting, logic operations, moving and copying data, and controlling program branching.

Control circuits often require reading or changing single bits of input or output, rather than
reading and writing abyte at atime. For example, amicrocontroller might usethe eight bits
of an output port to switch power to eight sockets. If each socket must operate independently
of the others, a way is needed to change each bit without affecting the others. Many
microcontrollers include bit-manipulation (also called Boolean) opcodes that easily allow
programs to set, clear, compare, copy, or perform other logic operations on single bits of
data, rather than a byte at atime.

Options for storing programs. Another consideration in circuit design is how to store
programs. Instead of using disk storage, most microcontroller circuits store their programs
on-chip. For one-of-kind projects or small-volume production, EPROM has long been the
most popular method of program storage. Besides EPROMS, other options include
EEPROM, ROM, nonvolatile (NV), or battery-backed, RAM, and Flash EPROM. The
program memory may be in the microcontroller chip, or a separate component.

To save a program in EPROM, you must set the EPROM’s data and address pins to the
appropriate logic levels for each address and apply special programming voltages and
control signals to store the data at the selected address. The programming process is
sometimes called burning the EPROM. You erase the contents by exposing the chip’s quartz
window, and the circuits beneath it, to ultraviolet energy.

Some microcontrollers contain aone-time-programmabl e, or field-programmable, EPROM.
This type has no window, so you can’'t erase its contents, but because it's cheaper than a
windowed IC, it's a good choice when a program is finished and the device is ready for
quantity production.

6 The Microcontroller [Idea Book

Microcontroller Basics

Several techniques are available for programming EPROMs and other memory chips. With
a manual programmer, you flip switches to toggle each bit and program the EPROM byte
by byte. Thisisacceptable for short programs, but quickly becomes tedious with a program
of any length. Computer control simplifies the job greatly. With an EPROM programmer
that connects to a personal computer, you can write a program at your keyboard, save it to
disk if you wish, and store the program in EPROM in a few easy steps. Data sheets for
EPROMSs rarely specify the number of erase and reprogramming cycles a device is
guaranteed for, but atypical EPROM should endure 100 erase/program cycles, and usually
many more.

EEPROM saremuch like EPROMsexcept that they areel ectrically erasable—no ultraviolet
source is required. Limitations of EEPROM s include slow speed, high cost, and a limited
number of times that they can be reprogrammed (typically 10,000 to 100,000).

ROM s are cost-effective when you need thousands of copies of a single program. ROMs
must be factory-programmed and once programmed, can’t be changed.

NVRAM typically includes a lithium cell, control circuits, and RAM encapsulated in a
single IC package. When power isremoved from the circuit, the lithium cell takes over and
preserves the information in RAM, for 10 years or more. You can reprogram an NVRAM
n infinite number of times, with the only limitation being battery life.

Flash EPROM is electricaly erasable, like EEPROM, but most Flash devices erase all at
once, or inafew large blocks, rather than byte-by-byte like EEPROM. Some Flash EPROMs
require specia programming voltages. As with EPROMs, the number of erase/program
cyclesislimited.

The 8052-BASIC usestwo types of program memory. An 8-kilobyte, or 8K, on-chip ROM
stores the BASIC-52 interpreter. For storing the BASIC-52 programs that you write, the
BASIC-52 language has programming commands that enable you to save programs in
externa EPROM, EEPROM, or NVRAM.

Other memory. Most systems also require away to store datafor temporary use. Usually,
thisis RAM, whose contents you can change as often as you wish. Unlike EPROM, ROM,
EEPROM, and NVRAM, the contents of the RAM disappear when you remove power the
chip (unlessit has battery back-up).

Most microcontrollersinclude some RAM, typically afew hundred bytes. The 8052-BASIC
has 256 bytes of internal RAM. A complete 8052-BA S| C system requiresat least 1024 bytes
of external RAM as well.

I/O options. Finaly, input/output (I/0O) requires design decisions. Most systems require
interfaces to things like sensors, keypads, switches, relays, and displays. Most microcon-

The Microcontroller Idea Book 7

Chapter 1

trollers have portsfor interfacing to the world outside the chip. The 8052-BA SIC uses many
of its portsfor accessing external memory and performing other special functions, but some
port bits are available for user applications, and you can easily increase the available I/O by
adding support chips.

Writing the Control Program

When it's time to write the program that controls your project, the options include using
machine code, assembly language, or a higher-level language. Which programming lan-
guage you use depends on things like desired execution speed, program length, and
convenience, aswell aswhat’s available in your price range.

M achine code. The most fundamental program form is machine code, the binary instruc-
tions that cause the CPU to perform the operations you desire.

Assembly language. One step removed from machine code is assembly language, where
abbreviations called mnemonics (memory aids) substitute for the machine codes. The
mnemonics are easier to remember than the machine codes they stand for. For example, in
the 8052’s assembly language, the mnemonic CLR C means clear the carry bit, andiseasier
to remember than its binary code (11000011).

Since machine code is ultimately the only language that a CPU understands, you need some
way of transl ating assembly-language programsinto machine code. For very short programs,
you can hand assemble, or trandate the mnemonics yourself by looking up the machine
codes for each abbreviation. Another option isto use an assembler, which is software that
runs on a desktop computer and trandates the mnemonics into machine code. Most
assemblers provide other features, such asformatting the program codeand creating alisting
that shows both the machine-code and assembly-language versions of a program side
-by-side.

Higher-level languages. A disadvantage to assembly language is that each device family
has its own set of mnemonics, so you have to learn a new vocabulary for each family you
work with. To get around this problem, higher-level languageslike C, Pascal, Fortran, Forth,
and BASIC follow a standard syntax so that programs are more portable from one device
to another. Theideaisthat with minor changes, you can use alanguage like BASIC to write
programs for many different devices. In redlity, each language tends to develop many
different dialects, depending on the chip and the preferences of the language's vendor, so
porting aprogram to adifferent deviceisn’t alwayseffortless. But thereare many similarities
among the dial ects of asinglelanguage, so, as with spoken language, anew dialect iseasier
to learn than a whole new language.

Higher-level languages also simplify programming by allowing you to do in one or a few
lines what would require many lines of assembly code to accomplish.

8 The Microcontroller [Idea Book

Microcontroller Basics

Inter preter s and compilers are two forms of higher-level languages. An interpreter trans-
lates a program into machine code each time the program runs, while a compiler trandates
only once, creating a new, executable file that the computer runs directly, without re-trans-
lating.

Asarule, interpreters are very convenient for shorter programs where execution speed isn’t
critical. With aninterpreted language, you can run your program codeimmediately after you
write it, without a separate compile or assembly step. A compiler is a good choice when a
programislong or has to execute quickly. A single language like BASIC may be available
in both interpreted and compiled versions.

Each devicefamily requiresitsowninterpreter or compiler to transl ate the higher-level code
into the machine code for that device. In other words, you can’'t use QuickBASIC for IBM
PCsto program an 8052 microcontroller—you need acompiler that generates program code
for the 8052.

Compared to an equivalent program written in assembly language, a compiled program
usually islarger and slower, so assembly language isthe way to go if aprogram must be as
fast or as small aspossible. A higher-level language also may not offer al of the abilities of
assembly code, though you can get around this by calling subroutines in assembly language
when necessary.

BASIC-52 isan interpreted language, but BASIC compilersfor the 8052 are also available.
In fact, you can have the best of both worlds by testing your programs with the BASIC-52
interpreter, and compiling the finished product for faster execution and other benefits of the
compiled version.

Testing and Debugging

After you' ve written aprogram, or a section of one, it’'stime to test it and as necessary, find
and correct mistakesto get it working properly. The process of ferreting out and correcting
mistakesis called debugging. Easy debugging and troubleshooting can makeabig difference
in how long it takesto get a system up and running. Aswith programming, you have severd
options here as well.

Testing in EPROM. One way isto burn your program into EPROM, install the EPROM
in your system, run the program, and observe the results. If problems occur (as they usually
will) you modify the program, erase and reburn the EPROM, and try again, repeating as
many times as necessary until the system is operating properly.

Development systems. Another option is to use adevelopment system. A typical develop-

ment system consists of a monitor program, which is a program stored in EPROM or other
memory in the microcontroller system, and a seria link to a personal computer. Using the

The Microcontroller Idea Book 9

Chapter 1

abilities of the monitor program, you can load your program from a personal computer into
RAM (instead of the more permanent EPROM) on the microcontroller system, then run the
program, modify it, and retry as often as necessary until the program is working properly.

M ost devel opment systems al so allow single-stepping, setting breakpoints, and viewing and
changing the data in memory. In single-stepping, you run the program one step at time,
pausing after each step, so you can more easily monitor what the circuits and program are
doing at each step. A breakpoint is a program location where the program stops executing
and waits for a command to continue. You can set breakpoints at critical spots in your
program. At any breakpoint, you can view or change the contents of memory or perform
other tests.

Simulators. Another development tool is a simulator, which is software that runs on a
desktop computer and usesthe video display to demonstrate what would happen if aspecific
microprocessor or microcontroller were to run a particular program. You can look “inside’
the simulated chip, observe the contents of internal memory, and single-step or set break-
points to stop program execution at a desired program location or condition. In this way,
you can get a program working properly before you commit it to EPROM. One drawback
to simulators is that they can’t mimic all features of the chip of interest, especially
interrupt-response and timing characteristics.

Emulators. An in-circuit emulator (ICE) is hardware that replaces the microprocessor in
question by plugging into the microprocessor’s socket on the device you want to test. Like
a simulator, an emulator lets you control program execution and monitor what happens at
each program step. Microprocessor emulators typically are expensive. A ROM emulator is
a lower-cost option that simulates an EPROM (using RAM, for example) for program
storage, and usually provides the abilities of a development system as well.

The 8052-BASI C’s development system. The 8052-BASIC system and a persona com-
puter form a complete development system for writing, testing, and storing programs. The
personal computer’s keyboard and screen make it easy to write and run programs and view
the results.

BASIC-52 has many built-in debugging featuresthat make it easy to test programs. You can
run aprogramimmediately after writing it, without having to assemble, compile, or program
an EPROM. You can use a STOP statement and CONT (continue) command to set
breakpoints and resume executing your program. You can use PRINT statements to display
variables as the program runs. And, if you wish, you can use your persona computer for
writing programs off-line and upl oading and downl oading them to the 8052-BA S| C system.

10 The Microcontroller Idea Book

Inside the 8052-BASIC

2
Inside the 8052-BASIC

This chapter introduces you to the 8052-BASIC chip, including the kinds of projects you
can do with it, what equipment, materials, and skills you need in order to design and build
an 8052-BASIC project, and a pin-by-pin look at the chip and its abilities.

Possibilities

The 8052-BASIC microcontroller isan easy-to-use, low-cost, and versatile computer-on-a-
chip. It'sideal for projectsthat require more than an assortment of logic gates, but less than
acomplete desktop computer system with afull keyboard, display, and disk drives. If you're
interested in doing more with computers than simply running applications programs, the
8052-BASIC gives you a chance to design and build a system from the ground up.

With afew support chips and aprogram stored in memory, you can use the 8052-BASIC to
sense, measure, and control processes, events, or conditions. Here are just afew examples
of the uses you can put it to:

e data collection

¢ machine control

e test equipment

e wired and wireless links for communications and control

The Microcontroller Idea Book 11

Chapter 2

The 8052-BASIC is actually two products in one: it's an 8052 microcontroller, with the
BASIC-52 programming language on-chip. To begin using the 8052-BASIC, you need a
minimum circuit consisting of the 8052-BASIC and some support components, plus a
personal computer. Thisbook contains specificinstructionsfor usewith *IBM-compatible,”
or MS-DOS, computers, but you can use any computer that has an RS-232 serial port and
communications software to go with it. Figure 2-1 shows the basic setup.

With an 8052-BASIC circuit connected by a seria link to a personal computer, you have a
complete development system with these abilities:

¢ Y ou can write and run BASIC programs. Y ou use the keyboard, video display, and
other resources of the personal computer to type and view the programs and commands
that the 8052-BA SIC system executes. BASIC-52 is an interpreted language whose
programs do not require an additional assembling or compiling step. Y ou can run
programs or execute commands immediately after you write them.

¢ Y ou can use BASIC-52' s programming functions to permanently store your programs
in EPROM or other nonvolatile memory. Y ou don’t need a separate EPROM
programmer.

SERITAL LINK BETWEEN
8052-BASIC AND PERSONAL COMPUTER.

WHEN PROGRAM DEVELOPMENT 1S COMPLETE,
SERITAL LINK MAY BE DISCONNECTED
FOR STAND-ALONE 8052-BASIC OPERATION.

L 77 ﬂgﬁﬂ% 5,

PERSONAL COMPUTER - 8052-BASIC CIRCUIT -
ALLOWS YOU TO ENTER, DISPLAY, RUNS AND STORES PROGRAMS.
TEST, AND EDIT PROGRAMS.

Figure 2-1 Setup for working with the 8052-BASIC.

12 The Microcontroller Idea Book

Inside the 8052-BASIC

¢ Y ou can aso store programs on your personal computer’s disk. You can write or edit
programs on your personal computer, and then upload them to the 8052-BASIC system.

¢ To the basic circuits, you can add displays, switches, keypads, relays, and other
components, depending on the needs of your project.

¢ After program development, you can disconnect the link to the personal computer and
let the 8052-BASIC system run its stored program on its own.

Limits

No single product isideal for every use. These are some of the limitations to the 8052-BA-
SIC:

¢ Program execution can be slow, compared with programs that run on more powerful
computers, or programs written in assembly language. A typical program linein
BASIC-52 takes severa milliseconds to execute. Because of this, there are some tasks
that BASIC-52 just can’'t handle—for example, detecting and responding to an interrupt
within afew microseconds. But for many control, monitoring, and other tasks,
BASIC-52 isfine. For example, aweather station that senses conditions once per
minute and stores or displays the results doesn’t need super-fast response. And, if
necessary, you can call an assembly-language routine for a portion of a program where
speed is critical.

Even if you write your programs in assembly language, C, or another language, you can
use the 8052-BA SIC system as a development system that enables you to upload your
program to memory, run the program, and test and debug your programs and circuits.

¢ Another limitation of the 8052-BASIC is that a complete project requires additional
components. If you' re looking for a true single-chip solution, the 8052-BASIC isn't it.
Even aminimal system requires an external RAM chip, and most systems aso have an
external EPROM or other non-volatile memory. The seria link and other optional
functions also use some of the on-chip timers and input/output ports, so these may not
be available for other uses.

Still, the 8052-BASIC lets you to do alot with alittle. When needed, you can easily add
chips to expand the input/output ports, timers, and other functions.

¢ And finally, don’t expect BASIC-52 to have the abilities of QBasic, Visual Basic or
other BASIC programming languages that you may use on your personal computer.
BASIC-52 is more capable than many other single-chip BASICs. It includes features
like loops, subroutines, string handling, and even floating-point math for handling

The Microcontroller Idea Book 13

Chapter 2

fractional quantities. But there are some primitive aspects to the language. For example,
the on-line editing functions are limited. Once you write a program line, you can
changeit only by retyping from the beginning. The limitations are understandable,
because the entire programming language has to fit in the 8052’ s 8 kilobytes of ROM.
Fancy editing and other features just aren’t feasible in this small space.

There are solutions here as well. Y ou can get around many of the editing limitations by
writing and editing programs off-line, using your personal computer and text editor, and
then uploading to the 8052-BASIC system. And, there are software and hardware
products that enhance BASIC-52 and make it easier to use, especialy for longer, more
complex programming jobs.

What You Need

To use the 8052-BASIC chip, you need the following equipment, materials, and skills:
Components

The 8052-BASIC chip and supporting components are widely available. Appendix A lists
sources for the components used in the circuits described in this book.

Power Supply

You'll need aregulated +5-volt power supply to power the circuits. Output capability of at
least 500 milliamperes is recommended for general experimenting. The power supply can
be powered by batteriesor AC linevoltage, but it must have aregulated output between 4.75
and 5.25 volts.

Construction Materials

To build the circuits, you'll need circuit-construction materials and the skills to use them.
Wire-wrapping is an effective, quick way to build the circuits described, but if you prefer,
you can use point-to-point soldering or design and make a printed-circuit board, or use any
method that you' re comfortable with. Another option is to buy one of the available kits or
prebuilt 8052-BASIC boards. You can then use this book as aguide to using and expanding
the abilities of your board. Appendix A lists board suppliers and books on project-construc-
tion techniques.

Documentation

Using just the information in this book, you can build and begin using your system. For
serious experimenting, two additional references are recommended: programming and

14 The Microcontroller Idea Book

Inside the 8052-BASIC

hardware manuals. For programming, you have two choices. Intel’s BASC-52 User’s
Manual, or Systronix’s BASC-52 Programming. Each of these describes the BASIC-52
programming language in detaill. The Intel manua includes a few schematics, while
Systronix’s version has more programming examples and is better organized in general.
Intel’sEmbedded Microcontrollersdatabook isahardwarereferencethat describesthe 8052
chip, including electrical specifications and timing requirements. It also includes an as-
sembly-language reference. Appendix A tells where to get these.

Other useful documentation includes data sheets for the other componentsin your projects.
For asmall charge, many component vendors will send along data sheets for the parts you
order.

Host Computer

To program the 8052-BASIC, you connect its circuits to a host computer, using an RS-232
asynchronous seria port and terminal-emulation software. The computer can be any type,
aslong asit has a seria port and appropriate software.

The seria port is the same connector where you plug in an external modem, seria printer,
serial mouse, or other RS-232 serial device.

Terminal-emulation software is the same type of software that you may use for modem
communications with an on-line BBS. Examples for MS-DOS computers are Datastorm

Table 2-1. Differences among 8051-family chips.

Chip Program Memory Ram Timers
(bytes)
Type kilobytes
8051 ROM 4 128 2
8052 ROM 8 256 3
8031 none - 128 2
8032 none - 256 3
8751 EPROM 4 128 2
8752 EPROM 8 256 3

¢ 80C51, 80C52, 80C31, and so on are CMOS versions of above.

¢ 80C51FA/B/C add more versatile timers and an enhanced serial channel.
¢ 8052-BASIC has the BASIC-52 programming language in ROM.

¢ Packages include 40-pin DIP, 40-lead PLCC, and 44-pin QFP.

The Microcontroller Idea Book 15

Chapter 2

Technologies' Procomm Plus and the Terminal accessory in Microsoft Windows. At mini-
mum, the software must enable you to do the following: set the baud rate and other
communications parameters, serially transmit the characters that you type at the keyboard,
and display the characters received at the serial port. Also useful, but not essentid, is the
ability to upload and download text files from your disk, over the serial link. If you don’t
have a favorite communications program, look in shareware catalogs or the file areas of
online services or BBS's, where you can try out the offerings for a small disk-copying or
downloading charge.

Test EQuipment

Some basic test equipment will help you monitor, test, and troubleshoot your circuits.
Minimum requirements include a multimeter capable of reading volts, ohms, and milliam-
peres. Just about any basic meter will do for this. A logic probe is convenient, but not
essential, for monitoring logic levels and transitions. Best of all, an oscilloscope lets you
view the actual waveforms on one or more channels.

Knowledge

This book assumes that you have abasic knowledge of electronic circuits, including digital
logic. It does not assume that you know alot about computer programming and computer
circuits. Appendix A lists some books that cover the basics, if you want to review or learn
these. Appendix Cisareview of hexadecimal, binary, and decimal number systems.

The 8051 Family

At the core of the 8052-BASIC is an 8052 microcontroller, a member of the 8051
microcontroller family. Intel Corporation introduced the 8051 in 1980. Since that time,
8051-family chips have been used as the base of thousands of products. Many other
companies, including Philips, Siemens, Dallas Semiconductor, OKI, Fujitsu, and Harris-
Matra now also make 8051-family chips. Some companies have expanded the 8051 family
by offering compatible chips with additional features.

Table 2-1 summarizes the differences among popular 8051-family chips. The 8052 is an
enhanced 8051, with an extra timer and more RAM and ROM. The 8031 and 8032 are
identical to the 8051 and 8052, except that the ROM areaisunused, and program code must
be stored in an external EPROM or other memory chip.

The 8052, like other 8051-family chips, isavailablein NMOS and CMOS versions. Figure

2-2 shows the pinout of the 8052 and 8052-BASIC, and Table 2-2 describes the pin
functions.

16 The Microcontroller Idea Book

Inside the 8052-BASIC

BASIC-52
FUNCTIONS
T2/p1.od1 2 aofpvec
T2(EX)/PL.142 9bro.0/ADO
PWM OUT PlL.203 38ppro.1/ADI
ALE DIS P1.304 37bPo.2/AD2
PCM PLS P1.405 36 PO.3/AD3
PGM EN Pl.5Ol6 3sibro.4/AD4
DMA ACK Pl.6017 34pbPo.5/AD5
LPT OUT P1.7018 33brPo.6/AD6
RESET}9 32bro.7/AD7
SER IN RXD/P3.0]10 JIPDEA
SER OUT TXD/P3. 1411 3o ALE
DMA REQ INTQ/P3.2412 290 PSEN
INTL/P3.3413 280 P2.7/A15
To/P3.4} 14 270 P2.6/A14
T1/P3.5415 260 P2.5/A13
WR/P3.6}16 250 P2.4/A12
RD/P3.70417 240 P2.3/A11
XTAL2]18 23 P2.2/A10
XTAL1 19 220 P2.1/A9
VSS[20 210 P2.0/A8
8052-BASIC
4Q-PIN DIP

Figure 2-2 Pin functions of the 8052 and 8052-BASIC microcontrollers.
Elements of the 8052 and 8052-BASIC

These are the mgjor elements of the 8052, plus the enhancements included in the 8052-BA -
SIC:

CPU

The CPU, or central processing unit, executes program instructions. Types of instructions
include arithmetic (addition, subtraction), logic (AND, OR, NOT), datatransfer (move), and
program branching (jump) operations. An external crystal provides a timing reference for
clocking the CPU.

ROM
ROM (read-only memory) isthe read-only memory that is programmed into the chip in the
manufacturing process. In the 8052-BASIC, the ROM contains the BASIC-52 interpreter

program that the 8052 executes on boot-up. As far asthe hardware is concerned, thisisthe
only difference between the ordinary 8052 and the 8052-BASIC.

The Microcontroller Idea Book 17

Chapter 2

Table 2-2.(page 1 of 2) Pin functions of the 8052 microcontroller and
8052-BASIC additions.

Pin Symbol Input/ 8052 8052-BASIC Additions
Output Function Symbol Function
1 P1.0 /0 Port 1, bit O;
T2 Timer 2 external input
2 P1.1 /0 Port 1, bit 1;
T2(EX) Timer 2 external reload/capture
3 P1.2 /0 Port 1, bit 2 PWM Pulse-width-modulated output
4 P1.3 /0 Port 1, bit 3 ALE DIS Address latch disable
5 P1.4 I/O Port 1, bit 4 PGM PLS Program pulse
6 P15 I/0 Port 1, bit 5 PGMEN Programming voltage enable
7 P1.6 /0 Port 1, bit 6 DMAACK DMA acknowledge
8 P1.7 /0 Port 1, bit 7 LPT Line printer out
9 Reset Input Reset system
10 P3.0 /0 Port 3, bit 0 SER IN Serial port in
RXD Serial receive
11 P3.1 /0 Port 3, bit 1 SER OUT Serial port out
TXD Serial transmit
12 P3.2 /0 Port 3, bit 2 DMA DMA request
INTO External interrupt O REQ
13 P3.3 lfe} Port 3, bit 3
INT1 External interrupt 1
14 P3.4 I/O Port 3, bit 4
TO Timer 0 external input
15 P3.5 I/1O Port 3, bit 5
T1 Timer 1 external input
16 P3.6 lfe} Port 3, bit 6
WR Write strobe for external
memory
17 P37 o Port 3, bit 7
RD Read strobe for external
memory
18 XTAL1 Input Inverting oscillator amplifier
(crystal)
19 XTAL2 Output Inverting oscillator amplifier
(crystal)
20 VSS Input Circuit ground

18 The Microcontroller Idea Book

Inside the 8052-BASIC

Table 2-2. (page 2 of 2)

Pin Symbol Input/ 8052 8052-BASIC Additions
Output Function (none on pins 21-40)
21 P2.0 /0 Port 2, bit 0
A8 Address bit 8
22 P2.1 /0 Port 2, bit 1
A9 Address bit 9
23 P2.2 /0 Port 2, bit 2
Al10 Address bit 10
24 P2.3 /0 Port 2, bit 3
All Address bit 11
25 P2.4 /0 Port 2, bit 4
Al2 Address bit 12
26 P2.5 /0 Port 2, bit 5
Al3 Address bit 13
27 P2.6 110 Port 2, bit 6
Al4 Address bit 14
28 P2.7 /0 Port 2, bit 7
Al15 Address bit 15
29 PSEN Output Program store enable
Read strobe for external
program memory
30 ALE Output Address latch enable
31 EA Input External access enable for
program memory
32 P0.7 /0 Port 0, bit 7
AD7 Address/data bit 7
33 P0.6 /0 Port 0, bit 6
AD6 Address/data bit 6
34 P0.5 110 Port 0, bit 5
AD5 Address/data bit 5
35 P0.4 /0 Port 0, bit 4
AD4 Address/data bit 4
36 P0.3 /0 Port 0, bit 3
AD3 Address/data bit 3
37 P0.2 /0 Port 0, bit 2
AD2 Address/data bit 2
38 PO.1 I//10 Port 0, bit 1
AD1 Address/data bit 1
39 P0.0 /0 Port 0, bit 0
ADO Address/data bit 0
40 Vce Input Supply voltage

The Microcontroller Idea Book

19

Chapter 2

RAM

RAM (random-access memory) is where programs store information for temporary use.
Unlike ROM, the CPU canwriteto RAM aswell asread it. Any information stored in RAM
is lost when power isremoved from the chip. The 8052 has 256 bytes of RAM. BASIC-52
uses much of thisfor its own operations, with a few bytes available to users.

I/O Ports

[/O (Input/Output) Ports enable the 8052 to read and write to external memory and other
components. The 8052 has four 8-bit 1/0 ports (Ports 0-3). As the name suggests, the ports
can act asinputs (to beread) or outputs (to bewritten to). Many of the port bitshaveoptional,
aternate functions relating to accessing external memory, using the on-chip timer/counters,
detecting external interrupts, and handling serial communications. BASIC-52 assigns
alternate functions to the remaining port bits. Some of these functions are required by
BASIC-52, while othersare optional. If you don’'t use an alternate function, you can usethe
bit for any control, monitoring, or other purpose in your application.

Accessing external memory. Thelargest alternate use of the ports hasto do with accessing
external memory. Although the 8052 is a single-chip computer, a complete 8052-BASIC
system requiresadditional components. It must have external RAM in addition to the 8052's
internal RAM, and most systems also have EPROM, EEPROM, or battery-backed RAM
for permanent storage of BASIC-52 programs.

Accessing this external memory uses all of Ports 0 and 2, plus bits6 and 7 of Port 3, to hold
data, addresses, and control signals for reading and writing to external memory. Data here
refersto abyteto beread or written, and may be any type of information, including program
code. The address defines the location in memory to be read or written.

During a memory access, Port 0's eight pins (AD0-AD7) first hold the lower byte of the
address, followed by the datato be read or written. This method of carrying both addresses
and data on the same signal lines is called a multiplexed address/data bus. It's a popular
arrangement that many devices use, since it requires fewer pins on the chip, compared to
giving each data and addressline its own pin. Port 2's eight lines hold the higher byte of the
addressto beread or written to. Theselines make up the high addressbus (A8-A15). Together,
the 16 address lines can access 64 kilobytes (65,536 bytes) of memory, from 00000000
00000000 to 11111111 11111111 in binary, or 0000h to FFFFh in hexadecimal.

Besides pins to hold the data and addresses, the 8052 must also provide control signals to
initiate the read and write operations. Control signals include WR (write), RD (read), PSEN
(program store enable), and ALE (address latch enable). Some of the address lines may also
function as control signals that help to select a chip during amemory access.

20 The Microcontroller Idea Book

Inside the 8052-BASIC

Code and data memory. To understand the operation of the control signals, you need to
know alittle about how the 8052 distingui shes between two typesof memory: dataand code,
or program, memory. By using different control signals for each type of memory, the 8052
can access two separate 64K areas of memory, with each addressed from 0000h to FFFFh,
and each using the same data and address lines.

The 8052 accesses code memory when it executes an assembly-language program or
subroutine. Code memory isread-only; you can’'t writetoit. Theonly instructionsthat access
code memory are read operations. Code memory is intended for programs or subroutines
that have been previously programmed into ROM or EPROM. The 8052 strobes, or pulses,
PSEN when it accesses external code memory. Accesses to internal code memory (the
BASIC-52 interpreter in ROM) do not use PSEN or any external control signals.

Datamemory isread/write memory, usualy RAM. Instructionsthat read datamemory strobe
RD, and instructions that write to data memory strobe WR. The termdata memory may be
misleading, becauseit can hold any information that is accessed with instructions that strobe
RD or WR. Infact, BASIC-52 programs are stored in datamemory, not code memory asyou
might think. Thisisbecausethe8052 doesnot executethe BASIC programsdirectly. Instead,
the BASIC-52 interpreter program reads the BASIC programs as data and then trandates
them to machine code for execution by the 8052.

If you don't need all of the available memory space, you can combine code and datamemory
in asingle area. With combined memory, WR controls write operations, and PSEN and RD
are logically ANDed to create a read signal that is active when either PSEN or RD is low.
Combined data/code memory is handy if you want the flexibility to store either BASIC or
assembly-language programs in the same chip, or if you want to be able to upload
assembly-language routines into RAM for testing.

ALE isthe fina control signal for accessing external memory. It controls an external latch
that stores the lower address byte during memory accesses. When the 8052 reads or writes
to external memory, it places the lower address byte on AD0O-AD7 and strobes ALE, which
causesthe external latch to save the lower address bytefor therest of the read or write cycle.
After ashort delay, the 8052 replaces the address on AD0-AD7 with the data to be written or
read.

Timers and Counters. The 8052 has three 16-bit timer/counters, which make it easy to
generate periodic signals or count signal transitions. BASIC-52 assigns optional functions
for each of the timer/counters.

Timer O controls a real-time clock that increments every 5 milliseconds. You can use this
clock to time events that occur at regular intervals, or as the base for clock or caendar
functions. Timer 1 hasseveral usesin BASIC-52, including controlling a pul se-width-modu-
lated output (PWM) (aseries of pulsesof programmable width and number); writingto aline

The Microcontroller Idea Book 21

Chapter 2

printer or other seria periphera (LPT); and generating pulses for EPROM programming
(PGM PULSE). Timer 2 generates a baud rate for serial communications at SER IN and SER
OUT. These are all typical applications for timer/counters in microcontroller circuits.

If you don’'t use the optional timer functions, you can program the timers for other
applications. In addition to timing functions, where the timer increments at a defined rate,
you can use the timersfor event counting, where the timer increments on an external trigger
and measures the time between triggers. If you use thetimersfor event counting, T2, T2(EX),
T0, and T1 detect transitions to be counted.

The serial port. The 8052's seria port automatically takes care of many of the details of
serial communications. On the transmit side, the serial port translates bytes to be sent into
seria data, including adding start and stop bits and writing the datain a timed sequence to
SER OUT. On the receive side, the serial port accepts seria dataat SER IN and setsaflag to
indicate that a byte has been received. BASIC-52 uses the seria port for communicating
with a host computer.

External interrupts. INTO and INT1 are external interrupt inputs, which detect logic levels
or transitionsthat interrupt the CPU and causeit to branch to apredefined program location.
BASIC-52 usesNTO for its optional direct-memory-access (DMA) function.

Programming functions. BASIC-52's programming commands use three additional port
bits (ALEDIS, PGM PULSE, and PGM EN) to control programming voltages and timing for
storing BASIC-52 programs in EPROM or other nonvolatile memory.

Additional Control Inputs

Two additional control inputs need to be mentioned. A logic high on RESET resets the chip
and causes it to begin executing the program that begins at 0 in code memory. In the
8052-BASIC chip, this program is the BASIC-52 interpreter. EA (external memory access)
determines whether the chip will accessinternal or external code memory in the areafrom
O0to 1FFFh. InBASIC-52 systems, EA istied high so that the chip runsthe BASIC interpreter
in internal ROM on boot-up.

Power Supply Connections

And, finally, the chip hastwo pinsfor connecting to a +5-volt DC power supply (vCC) and
ground (VSS).

That finishes our tour of the 8052-BASIC chip. We' re now ready to put together a working
system.

22 The Microcontroller Idea Book

Powering Up

3

Powering Up

This chapter presentsacircuit that enables you to start using the 8052-BASIC chip. You can
write and run programs and experiment with the BASIC-52 programming language. Later,
you can add non-volatile memory for permanent program storage and interfacesto displays,
keypads, and whatever else your projects require.

About the Circuit

Figure 3-1 contains all of the components you need to get a BASIC-52 system up and
running, plus afew optional extras for future use. Table 3-1 is a partslist for the circuit.

The circuit has five mgjor components: the 8052-BASIC chip (U2), an address latch (U4),
an address decoder (U6), static RAM (U7), and an RS-232 interface (U5). As I’ll explain
below, afew of the componentsaren’t essential at this point, but I’ veincluded themto allow
easy expansion later on.

Thecircuit configuration isamore-or-less standard design, similar to many other microcon-
troller circuits. When you understand this circuit, you' re well on your way to understanding
many others.

Thefollowing paragraphs explain the circuit operation, component by component. If you' re
impatient to get started, you can skim or skip over this section for now, and go straight to
the construction details.

The Microcontroller Idea Book 23

Chapter 3

DATA BUS (D@-D7)

u2 vl
80(C152-BASIC R9 74HCT373
L 1ok D03 2 A
—P1-e/12 ADO o] 10 10—
+5y —5{P1.1/T2EX ADI % o] 20 20—
PWM —{P1.2/PWM AD2 o 55l 30 30—
-ALEDIS —P1.3/ALEDIS AD3 o T3] 40 40— LOW ADDRESS BUS
-PGM PLS —P1.4/PGM PLS AD4 5 05141 50 50 =73 (A@-A7)
R1 ~PGM EN —{P1.5/PGM EN AD5S 3 171 60 60 =702
10K —5|P1-6/DMA ACK AD6 o 718 7° 70—
DI —P1.7/LPT AD7 8D 80 v7
ot | 2 9 == +5Y I 6264 (8K)
x UlA RESET EA LE oR
s! L T ALE == 62256 (32K)
74HC14 SER IN——P3.0/RXD BASIC ocC
RESET Il —
¢ P3.1/1XD PSEN ADDRESS LATCH Ao |
1 P3.2/1NT@/DMA JT[Q|EXTERNAL 5 j— A AQ 1/01
P3.3/TNTI AlS — -ALEDIS — - A Al 1/02
— P3.4/T0 Al4 - 4 A3 A2 1/03
- P3.5/TL Al3 yvammrs LX) 1/04
P3.6/fR Al2 | A =M 1705
P3.7/RD Al ro 1/06
Alo) -RDANY A7 3|A6 1/07
XTAL2 A9 ~READ— A7 1708
XTALI A8
e s 2
MICROCONTROLLER 74HCT(38 A9
Al 201,
AlS 3 A 23
12 51¢ Y0 [-—— 0000+ A 5 ALl
A3 T8 Y1 e 2000H Al2
A Y2 5— 4000H *5V
+5Yy Y3 5— 6000H
Y4 [=—— 8000H J2[O|8K 26
6 Y5 ——— AQOQH AL e CS2/A13
Gl
+5V 41597 Y6 [5— C@0OoH 32K
5|5%8 Y7 —— EQ00H Al4 lNC/AT4
+ mos F 0000H o] 8k 20| —
V+(+10V) = T ADDRESS DECODER <! csi
AlS
32K
c7 5 N HIGH ADDRESS BUS (A8-Al5) y J3 .%.a&@
v-(-lev) Lo _|I:s_._" -READ -~ 0E
5 — STATIC RAM
c2- -
Rs232 N 3[R M~ Riol12 o mww POWER AND GROUND PINS
L - 1 1 1 1 | ic | +sv | ono
8 R2] V R209 TN TN TN TN TN ™~ I 14 ;
c8 [cle cll C cl u2 40 20
Rs232 oyt A4 T1O A__ THTL e out v_\ TouF | 0.I1uF | @.1uF [0.1uF | 0O 0. 1uF U3 (4 7
7lt20 1 121]10 Vv [Leol U4 20 (o
~J us 16 15
j— 3 16 8
RS232 INTERFACE - PLACE A @.1uF CAPACITOR NEAR THE +5V AND u7 28 (4

GND CONNECTIONS OF EACH IC.

Figure 3-1. Complete 8052-BASIC system for experimenting.

The Microcontroller Idea Book

O |N|o|u
RIR[R(RE8Z8

24

Powering Up

Table 3-1. Parts list for Figure 3-1's circuit.

Semiconductors

LED1 Light-emitting diode

Ul 74HC14 quad inverting Schmitt trigger

u2 8052-BASIC or 80C52-BASIC microcontroller

U3 74HCTO08 quad AND gate

U4 74HCT373 octal transparent latch

us MAX?232, RS-232 driver/receiver

U6 74HCT138 3-to-8-line decoder

u7 6264 (8 kilobyte) or 62256 (32 kilobyte) static RAM, access time 250ns or
less

Resistor s (1/4-watt, 5% tolerance)

R1-R9 10,000-ohm
R10 330-ohm

Capacitors (16WVDC, 20% tolerance)

C1,C8 10-microfarad, aluminum or tantalum electrolytic
C2,C3 30-picofarad ,ceramic disc

C4-C7 1.0-microfarad,aluminum or tantalum electrolytic
C9-C13 0.1-microfarad, ceramic disc

Miscellaneous

J1-33 SIP header, 3-terminal, and shorting block
S1 Switch, normally-open momentary pushbutton
XTAL1 11.0592-Mhz crystd

RS232 connector, | C sockets, perforated board, wire, solder, and other circuit-construction
materials

The Microcontroller

U2 isthe 8052-BASIC chip. The circuit is designed so that you can use either the NMOS
version or the CMOS 80C52-BASIC.

EA, the External Access Enableinput (pin 31 of U2), connectsto +5V. This causes the 8052
toruntheBASIC-52interpreter inROM on boot-up. If EA islow, the8052 ignoresitsinternal
ROM and instead accesses external program memory on boot-up. You can wire EA directly

The Microcontroller Idea Book 25

Chapter 3

to +5V, or use a jumper as shown in the schematic, to allow you to bypass BASIC-52 and
boot to an assembly-language program in external memory, as described in Chapter 13.

Thecrystal. XTAL1isan 11.0592-Mhz crystal that connectsto pins 18 and 19 of U2. This
crystal frequency hastwo advantages. It givesaccurate baud ratesfor serial communications,
due to the way that the 8052’s timer divides the system clock to generate the baud rates.
Plus, BASIC-52 assumes this frequency when it times the real-time clock, EPROM
programming pulses, and seria printer port.

However, you should be able to use any crystal value from 3.5 to 12 Megahertz. If you use
adifferent value, you can use BASIC-52's XTAL operator to adjust the timing to match the
frequency of the crystal you are using. The serial communications are reliable if the baud
rate is accurate to within a few percent. The higher the crystal frequency, the faster your
programs will execute, so most designs use either 11.0592 Mhz or 12 Mhz, which is the
maximum clock frequency that the standard 8052 chip can use.

Capacitors C2 and C3 are 30 picofarads each, as specified in the 8052's data sheet. Their
precisevalueisn’'t critical. Smaller values decreasethe oscillator’ s start-up time, whilelarger
values increase stability.

Reset circuit. A logic high on pin 9 of U2 resets the chip. On power up, pin 1 of U1 rises
slowly from OV to +5V as capacitor C1 charges through resistor R1. Inverter U1 has a
Schmitt-trigger input, which has upper and lower switching thresholds that help to ensure
aclean reset pulse at pin 9 of U2. On alogic gate that doesn’t have a Schmitt-trigger input,
the output may oscillate if aslowly changing input remains near the switching threshold. In
contrast, at U1, when pin 1 reaches the upper switching threshold (about 2.8V), pin 2
switches from high to low, but won’t go high again until pin 1 drops to the lower threshold
of about 1.8V.

Pressing and releasing S1 resets the 8052-BA S| C chip by discharging C1 and then allowing
it to recharge, which brings RESET high, then low again

External Memory

The remaining connections to U2 have to do with reading and writing to external memory.
Read and writesignals. To enable reading combined program and datamemory, AND gate
U3A’s output is RDANY. This signal islow when either READ or PSEN islow. Figure 3-1's

circuit doesn't use RDANY, but I’ ve included U3A for future use. Writing to data memory
is controlled by WRITE. Code memory can’t be written to.

ADO-AD7 connect to U4, a 74HCT 373 octal transparent latch that stores the lower address
byte during memory accesses. The chip containsaset of D-typelatchesthat storelogic states.

26 The Microcontroller Idea Book

Powering Up

74HCT 138
3-TO-8-LINE DECODER
INPUTS
OUTPUTS
ENABLE SELECT
Gl GAGIB| C B A|YD YL Y2 Y3 Y4 Y5 Y6 Y7
L X X|X X X|H H HH HHH H
X H X|X X X|H H H H H H H H
X X H|X X X|H H H H H H H H
H L L|L L L|L H H H H H H H
H L L|L L H|H L H H H H H H
H L L|L H L|H H L H H H H H
H L L|L H H|/H H H L H H H H
H L L|H L L|H H H H L H H H
H L L|H L H|/H H H H H L H H
H L L|H H L|H H H H H H L H
H L L|H H H|/H H H H H H H L
74HCT373
OCTAL TRANSPARENT LATCH
OUTPUT | LATCH
CONTROL | ENaBLE| PATA| OUTPUT
oC LE [ID-8D| 1Q-8Q
L H H H L=LOGIC LOW
L H L ﬁb H=LOGIC HIGH
L L X | CHANGE X=DON'T CARE
H X X 7 7-HIGH [MPEDANCE

Figure 3-2. Truth tables for the 74HCT138 decoder and 74HCT373 octal
transparent latch.

A latch-enable input (LE) controls whether the outputs are latched (stored), or not latched
(immediately follow the inputs). Figure 3-2 shows the truth table for the chip. When pin 11
ishigh, 1Q-8Q follow 1D-8D. When pin 11 goes |ow, outputs 1Q-8Q will not change until pin
11 goes high again.

During each external memory access, 1Q-8Q store the low address byte, so the eight lines
that connect to these outputs carry the label LOW ADDRESSBUS. AND gate U3B latches, or
stores, U4's outputs only when both ALE and ALEDIS are high. During norma memory
accesses, ALEDIS remains high, and ALE controls U4. ALEDIS disables the latches when
BASIC-52 executes its programming commands. Figure 3-1's circuit doesn’'t use the
programming commands, so ALE could control U4 directly, but again, I’ ve included U3B
for future use.

Because ADO-AD7 hold the data to be read or written during a memory access, thesignals as
agroup carry the label DATA BUS. Each line of ADO-AD7 hasa 10K pullup resistor. These are

The Microcontroller Idea Book 27

Chapter 3

required for the programming functions, and are included for future use. You can use eight
individual resistors, or aresistor network that containseight resistorsina S| Por DIP package.
In abussed resistor network, one pin connectsto one side of all of theresistors, so you have
fewer connectionsto wire.

The remaining bus is the HIGH ADDRESS BUS (A8-A15), which consists of the upper eight
address lines, and is not multiplexed.

Address decoding. U6 is a 74HCT138 3-to-8-line decoder. It functions as an address
decoder for the 64K external memory space. Address decoding allows multiple chips to
connect to the address and data buses, with each chip enabled only when it is selected.

Figure 3-2 shows atruth table for the decoder. The 8052-BASIC chip uses the three highest
address lines (A13-A15) to generate a chip-select signal for each of eight 8K blocks in
memory. Thisisby no meansthe only way to decode memory, but it sacommon and flexible
one. In the schematic, each output is labeled with the base, or bottom, address in the block
it controls.

For example, when U2 reads or writes to an address between 0 and 1FFFh in external
memory, A13,A14, and A15 are low, so pin 15 of U6 islow. For all other addresses, pin15is
high. If we connect pin 15 to the chip-select input of an 8K RAM, the RAM will be enabled
only when addresses from 0 to 1FFFh are accessed. (Remember that 8K, or 8 kilobytes, is
2000h, or 0 through 1FFFh, in hexadecimal.)

If you use a 32K RAM, you don't need U6 to decode its addressing. For al of the 32K
RAM'’s addresses (0 to 7FFFh), A15islow, and for al other addresses (7FFFh to FFFFh),
A15is high. This means that you can use A15 directly as a chip select, without additional
decoding. U6 will comein handy later, however, even if you use a 32K RAM.

RAM choices. Theminimal circuit includesjust one memory chip, U7, which can bean 8K
or 32K static RAM, or SRAM. BASIC-52 requires at least 1K of RAM, but I’ ve used the
larger capacities, since the extraroom is useful and doesn’t cost much more. The pinouts of
the two chips are similar, with jumpers J2 and J3 routing the signals that vary.

The 8K chip has 13 addressinputs (A0-A12), while the 32K chip has 15 (A0-A14). Eight data
I/O pins (1/01-1/08) connect to the data bus and hold the bytes to be read or written.

The RAM has three control inputs whose functions match those of the 8052's control

outputs. Pin 20 (Cs1, or Chip Select 1) enables U7 whenever the 8052 reads or writesto the
chip, with the address decoding determining the address range of the chip.

28 The Microcontroller Idea Book

Powering Up

Jumper J3 chooses the chip select for an 8K or 32K device. Some 8K RAMs have a second
chip select (Cs2), which is tied high (always selected) by J2. If you limit yourself to either
8K or 32K RAMs, you can eliminate J2 and J3 and wire the appropriate connectionsdirectly.

Pin 27 (WE, or Write Enable) is driven by WRITE, and is strobed low during each write to
external data memory. Pin 22 (OE, or Output Enable) is driven by READ, and strobes low
when either external data or code memory is read.

With an 8K RAM, each write cycle follows this sequence: The 8052 brings ALE high and
places the address to be written to on ADO-AD7 and A8-A15. For addresses from O to 1FFFH,
A13-A15arelow, so U7 isselected at its pin 20. After a short delay, the 8052 brings ALE low,
which causes U7 to storethelower address byte. After another short delay, the 8052 replaces
the address on ADO-AD7 with the data to be written. A low pulse at pin 27 (WE) causes the
RAM to write the data into the address specified by A0-A12.

Read cyclesare similar, except that apulseat pin 22 (OE) causes the requested datato appear
on ADO-AD7, where the 8052 readsiit.

With a 32K RAM, the process is the same, except that A15 is the chip select and there are
two more address lines on the chip.

Static RAM chips are rated by their read-access time, which is the maximum time the chip
will requireto place abyte on the data bus after aread is requested. With acrystal frequency
of 12 Mhz or lower, an access time of 250 nanoseconds or lessisfine for accessing external
data or code memory. Access times and other timing characteristics are described in the
timing diagrams in the data sheets for the 8052 and RAM.

When you use the 8052-BASIC, you don’t have to worry about any of these specifics about
the read and write cycles. If the circuit iswired correctly, and if all of the components are
functioning as they should, reading and writing occur automatically in the course of
executing BASIC-52 statements and commands. A single program line in BASIC-52 can
cause dozens or more read and write operations to occur.

Logic families. Logic chips U3, U4, and U6 are HCT-family components, which have
TTL-compatible inputs and CM OS-compatible outputs. This means that they can interface
directly to either TTL or CMOS logic.

If HCT-family parts aren’t available, there are alternatives. You may use an LSTTL chip
(74LS08, 74L.S138, 74LS373) for U3, U4, or U6. Or, if you use a CMOS 80C52-BASIC
for U2, you may use an HCMOS 74HCO08 or 74HC138 for U3 or U6. If U3 isa74HCO08 or
74HCTO08, you may use a 75HC373 for U4. For U1, you may use a 74HC14 or 74LS14.

The Microcontroller Idea Book 29

Chapter 3

Table 3-2. Voltage specifications for different types of logic, powered at 5V.
Logic Type Output Input
0 (maximum) 1 (minimum) 0 (maximum) 1 (minimum)

TTL, including LSTTL 0.4v 2.4V 0.8v 2.0v

most NMOS

HCTMOS 0.1v 4.9v 0.8V 2.0V

HCMOS 0.1v 4.9V 1.0v 3.5V

4000-series CMOS 0.1v 4.9V 1.5V 3.5V

Table 3-2 summarizes the input and output voltage specifications for different logic-device
families. The main point to remember is that a TTL logic-high output voltage (and most
NMOShigh outputs) may beaslow as 2.4V, which does not meet the minimum input-voltage
requirement for HCMOS or 4000-series CMOS devices. To interface a TTL output to
CMOS, useanHCTM OSdevice, which accepts TTL-logicinputs. Or, you may add apull-up
resistor toa TTL output to pull it near +5V.

Serial Interface

The final chip in the schematic is U5, a MAX232 driver/receiver, which is the popular
single-chip solution for RS-232 interfaces. One side connects to the 8052's serial input and
output on pins 10 and 11 of U1, and the other side sends and receives signals at standard
RS-232 levels to a personal computer. Larger capacitor values for C4-C7 are fine, and the
MAX232A version can usevaluesas small as 0.1 microfarad. If you splurgeonaMAX 233,
which has internal capacitors, you don’'t need C4-C7 at all.

Power Supply

A final essential component is the power supply. For the basic system, all you need is a
regulated +5-volt supply. These are widely available from mail-order suppliers. An output
capability of at least 500 milliamperes is recommended.

Capacitors C8-C13 provide power-supply decoupling. Digital devices draw current as they
switch. Capacitors C9-C13 store energy that the components can draw quickly, without
causing spikes in the supply or ground lines. C8 stores energy for quick recharging of
C9-C13. The exact values aren't critical, but C9-C13 should be a type with good high-fre-
guency response, such as ceramic, mica, or polystyrene.

LED1 and current-limiting resistor R10 are an optional power-on indicator.

30 The Microcontroller Idea Book

Powering Up

Figure 3-3. This is the circuit board on which | wire-wrapped and tested
many of the circuits in this book.

Circuit Construction

This circuit is intended for use as a flexible system for testing and experimenting, rather
than a fixed, unchanging design for a single application. For this reason, | recommend
building it with wire-wrapping or another construction method that allows easy changesand
additions. Figure 3-3 shows an 8052-BASIC circuit wire-wrapped onto perfboard.

Reading the Schematic

In the schematic, | used a couple of different techniques to represent connections between
pins and components. In the reset circuit, connections are drawn as direct point-to-point
lines. For the address and data lines, | used buses for a neater, more compact schematic.
When you wire these connections, use the signal labels as a guide. For example, the label
DO tells you to interconnect these points: pin 39 of U2, pin 3 of U4, pin 11 of U7, and one
end of R2. Other connectionsareindicated by labels. For example, the WRITE label tellsyou
to connect pin 16 of U2 and pin 27 of U7.

Another point to be aware of is the conventions used in the schematics and text of this book
for indicating an active-low signal, or asigna that is valid, or enabled, when low. In this
book, the schematics use a leading hyphen (-WRITE) , while the text uses an overscore
(WRITE). Their meanings are the same.

The Microcontroller Idea Book 31

Chapter 3

DOT INDICATES
PIN | do~ hia
200 013
30 012
PINS COUNT UP 40 011
COUNTER -
CLOCKWISE >0 - 1o
FROM PIN | 60 19
700 8
Lro\t4 TOP VIEW
(PINS POINTING DOWN)
7\ 8

INTEGRATED CIRCUIT
DUAL IN-LINE PACKAGE (DIP)

ANODE CATHODE
(POSITIVE) (NEGATIVE)
TERMINALS ?
FLAT EDGE

INDICATES
ANODE LEAD IS —> CATHODE
N OFTEN LONGER
STRIPE INDICATES S 1DE 80T TOM
CATHODE END VIEW VIEW
DIODE LED
NEGATIVE
TERMINAL
LABELED
;- — — 7/
D==2=p=/
+| & POSITIVE
TERMINAL
AXTAL-LEAD LABELED
ALUMINUM
RADIAL -LEAD
ALUMINUM TANTALUM

— POSITIVE LEAD 1S OFTEN LONGER

ELECTROLYTIC CAPACITORS

Figure 3-4. How to determine the correct orientation for ICs, diodes, LEDs,
and electrolytic capacitors.

32 The Microcontroller Idea Book

Powering Up

Construction Tips
These are some things to be aware of as you build the circuit:
¢ Choose a circuit board that has room for additions, at least 4 by 6 inches.

¢ A board with interleaved buses, such as Vector’'s 3677 series, alows easy,
low-impedance connections to +5V and ground. Designate one bus as ground, and the
other as +5V. For power and ground connections, wrap one end of the wire to the
appropriate pin on the chip, and trim and solder the other end directly to the bus.

¢ To connect the power and ground buses to the +5V supply, use thick (AWG #22 or
lower) wires, not #30 wire-wrap wires. Y ou can solder the other ends of the wiresto
banana plugs or screw terminals, or clip your power-supply leads directly to the wires.

¢ The schematic doesn’t show an ON/OFF switch for the circuit, but you can add a SPST
toggle or dide switch in series with the connection to the +5V supply if you wish.

e Place C8 near where the +5V supply connects to the board. Mount decoupling
capacitors C9-C13 so that each chip’s +5V and GND pins are near a capacitor. In other
words, space the capacitors evenly around the board; don’t group them all in one area.
Keep the wires or traces between the capacitor’s leads and the IC’' s +5V and ground
pins as short as possible.

¢ To minimize noisein the oscillator circuits, place XTAL1, C2, and C3 closeto pins 18
and 19 of U2 and connect them with short wires. Wire the ground terminals of C2 and
C3 directly to pin 20 of U2.

¢ When you wire the following components, correct orientation is required: C1, C4-C8,
D1, LED1, and U1-U7. Figure 3-4 shows common polarity indicators for these
components. Notice that C7’ s positive terminal connects to ground, and C6’ s negative
terminal connectsto +5V, since these capacitors connect to the MAX232's-10V and
+10V outputs.

¢ Asyou wire the circuits, remember that everything on the wire-wrap or solder side of
the board is amirror image of the way it looks on the component side of the board. If
pin 1isin the upper left corner on the component side, it’ s in the upper right corner on
the wire-wrap side (assuming that you flip the board over from side to side, not top to
bottom).

e |_abels on the wire-wrap side are helpful. Y ou can place adot of indelible ink near pin

1, or adhesive labels between the pins, or use prelabeled and punched plastic labels that
dide onto the wire-wrap pins.

The Microcontroller Idea Book 33

Chapter 3

(O A
' a2 (40 ©!
TD (DATA OQUT) |2e o o O02|RS232 IN (U5, PIN 13)
RD (DATA IN) |3e o o O3|RS232 OUT (U5, PIN 14)
° O
) O
° O
) O
° o o O
SIGNAL GROUND (SGND)|7e o o O7|GND (U5, PIN 15)
° O
) O
° O
) O
° O
) O
° O
° * © O
O

RD (DATA IN)
TD (DATA OUT)

RS232 OUT (U5, PIN 14)
RS232 IN (U5, PIN 13)

SIGNAL GROUND (SGND) GND (U5, PIN 15)

9 PINS

MALE (PIN) CONNECTOR FEMALE (SOCKET) CONNECTOR
HOST COMPUTER TARGET COMPUTER
(PC) (8052-BASIC)

Figure 3-5. Pin connections for 25-pin and 9-pin RS-232 connectors.

e Don't plug the ICs into their sockets until you've completed wiring all of the circuits.

Unused Gates

Two gateson U3 and five gateson U1 are unused. To prevent the unused CMOSinputsfrom
floating and possibly drawing excessive currents, wirepins9, 10, 12, and 13 of U3 to ground
or +5V. Do the same for pins 3, 5, 9, 11, and 13 of Ul. Don't forget to remove these
connectionsif youlater usethepins. If youareusing LSTTL chips (74L S08, 74L S14), leave
the unused inputs open.

34 The Microcontroller Idea Book

Powering Up

Serial Connectors

Connections to RS-232 OUT and RS-232 IN depend on the type of serial connector you have
on your personal computer or its seria cable.

Connectors vary, but two common ones are amale 25-pin or 9-pin D-connector. (The outer
shell of a D-connector isroughly in the shape of aD.) For the 8052-BASIC system, you'll
need a mating female 25-pin or 9-pin D-connector. The connection has just three wires. A
solder-cup-type connector alows easy soldering of the wires.

Figure 3-5 showsthewiring for 9- and 25-pin connectors. A few computersrequireadditional
handshaking signals. BASIC-52 doesn’t support these, but you can simulate them by
connecting together pins 5, 6, 8, and 20 at the personal-computer end of the link. (Pin
numbers are for a 25-pin connector.)

Powering Up

The first time you power up an untested circuit, it pays to be cautious. | recommend the
following steps:

First Steps

Visually inspect the circuit. You don’t have to spend alot of time on this, but sometimes a
missing or miswired wire or component or another problem will become obvious.

Install U1-U7 on the board, making sure that pin 1 on each is oriented correctly. Set J1 to
BASIC, and set J2 and J3 to match the size of your RAM at U7.

With an ohmmeter, measure the resistance from +5V to ground, to be sure these aren’t
shorted together by mistake. The exact value you measure isn’t critical, but if you read less
than 100 ohms, something is miswired and you need to find and fix the problem before you
continue.

If you suspect aproblem, check the wiring of the power and ground connections, comparing
the connections to those on the schematic. Be sure all components are oriented correctly.
When all checks out, you're ready to boot up BASIC-52.

Booting BASIC-52

For theinitial check, begin with everything powered down. I'll use the term host computer,

or host system, to refer to the personal computer, and target computer, or target system, to
refer to the 8052-BASIC circuits. Included are some specific tips for users of Datastorm’s

The Microcontroller Idea Book 35

Chapter 3

[=12]

4

File Edit Et.:tli.ngs Phone Transfers ﬂelp .

*MCS-51(tm) BASIC U1.1=
READY

»print mtop

8191

[I+

»print xtal
11859280

>18 print "hello, world"
28 end

»list

18 PRIHNT "hello, world"™
28 EHD

READY
*run

hello, world

READY

b |

[«] 1 [+

Figure 3-6. BASIC-52’s sign-on message and a simple program, using the
Windows Terminal accessory for communications.

Procomm Plus for DOS and Microsoft Windows 3.1's Terminal Accessory, but other
communications software should have similar features and abilities.

Turn on the host computer and run your communications software. Configure the software
for 8 databits, no parity, and 1 stop bit. Thebaudrateyou select isn’'t critical, snce BASIC-52
automatically adjuststo what you are using. To start, use arate of 9600 or less. Don’t enable
any handshaking or flow-control options such as XON/XOFF or RTS/CTS.

Select the appropriate serial, or COM, port, if necessary. If you're using an MS-DOS
(IBM-compatible) computer, you must find a COM port and interrupt-request (IRQ) level
that aren’t being used by your modem, mouse, or another device. Because COM1and COM3
often share an IRQ level, as do COM2 and COM4, you generaly can’'t use COM1 and
COM3 at the same time, or COM2 and COMA4. If you have an external modem, you can
unplug it and use its serial port.

In Procomm Plus, use the line/port setup menu (ALT+P) to configure. In the Windows

Terminal, use the Settings menu. Cable together the serial ports of the host and target
systems.

36 The Microcontroller Idea Book

Powering Up

You're now ready to power up the target system. Turn on its power supply, and press the
SPACE bar at the host’s keyboard. You should see this BASIC-52 sign-on message and
prompt:

MCS-51(tm) BASIC V1.1
READY

Figure 3-6 shows the sign-on message and a ssimple program, using Windows' Termina
accessory for communications.

Troubleshooting

If you don’'t see the prompt, it’stime to troubleshoot. Getting the system to boot up the first
time can be the most challenging part of a project, especially when serial communications
areinvolved. Here are some things that may help you isolate the cause of the problem:

e Try again by pressing and releasing S1 and pressing the space bar. If you are using a
32K RAM for U7, BASIC-52 requires about 1 second to perform its memory check
after areset, before it will respond to the space bar. With an 8K RAM, the delay isa
few tenths of a second (proportionately longer with ower crystals).

¢ Double-check the easy things. Are the communications parameters correct? Did you
select the correct serial port? Are all 1ICsinserted?

o Verify that pin 9 of U2 goes high, then low, when you press and release S1.

¢ Check the power and ground pins of all ICsfor proper voltages.

e Connect alogic probeto pin 10 of U2. When you press the space bar, you should see
thelogic level toggle as U2 receives the ASCII code for a space (20h). If not, you
probably have a problem in the setup of your communications software or in the serial

cabling.

o Verify that pin 30 of U2 istoggling (at 1/6 the crystal frequency, if you have an
oscilloscope to measure). Thisindicates that the oscillator circuit is functioning.

o Verify that pins 21-28 and 32-39 of U2 toggle as BASIC-52 performs its memory
check immediately after powering up or rebooting.

o |f all elsefails, recheck your wiring for missing or misrouted wires. Sometimes there's

no alternative but to go through the schematic connection by connection, checking each
with an ohmmeter.

The Microcontroller Idea Book 37

Chapter 3

Basic tests

When your system boots, you're ready for some basic tests. The BASIC-52 programming
manual is a useful reference at this point.

In some ways, BASIC-52 is similar to BASIC compilers like Microsoft's QuickBASIC.
Many of the keywords and syntax rules are similar. But BASIC-52 is closer to older
interpreted BASICslike GW-BAS C or BAS CA. You can type a statement or command and
execute it immediately when you press ENTER, Or you can type a series of statements and
run them later as a program. When a line begins with aline number, BASIC-52 treatsit as
aprogram line rather than as a command to execute immediately.

Here are some quick tests and experiments you can do:

Memory Check

Type

PRINT MTOP

to learn the amount of external data memory that BA SIC-52 detected on boot-up. With an
8K RAM, MTOP should be 8191, and with 32K, it should be 32,767. If you prefer
hexadecimal notation, type

PHO. MTOP

(In PHO ., be sure to include the period and use a zero, not the letter “O”.)

Crystal Frequency

The specia operator XTAL represents the value of the timing crystal that clocks the
8052-BASIC. Thedefault valueis 11059200, or 11.0592 Mhz. You can verify thisby typing

PRINT XTAL
Most BASIC-52 statements don’t use the X TAL operator, so it doesn’'t matter if the value
isn't accurate. Exceptions are the real-time clock, programming commands, PWM output,
and LPT output. For these, XTAL should match your crystal’s frequency. To set XTAL for a
12Mhz crystal, type

XTAL=12000000

To verify, type

38 The Microcontroller Idea Book

Powering Up

PRINT XTAL

Line Editing

After typing afew commands, you may discover some of BASIC-52'sline-editing abilities.
While typing aline, you can correct mistakes by deleting back to the mistake and retyping.
In Procomm Plus, if you select VT100 terminal emulation (under Setup menu, Terminal
Options), you can use either the DELETE or BACKSPACE key to delete. With the Windows
terminal, you must use the DELETE key (not BACKSPACE). Many communications programs
alow you remap the keyboard, so you can select whatever delete key you wish.

Once you press ENTER, you can't edit a line you' ve typed, unless you retype it from the
beginning.

BASIC-52 treats upper and lower-case characters the same. In most cases, spaces are
ignored, so you can include them or not as you wish.

Running a Program
Hereisavery simple program to try:
10 FOR I=1 to 10

20 PRINT T

30 NEXT I

40 END

Enter each of the lines, including the line numbers. BASIC-52 automatically stores the
program in RAM. To run the program, type RUN. You should see this:

= W 00 JO0 Ul ix WDN -

0
To view the program lines, type
LIST

The Microcontroller Idea Book 39

Chapter 3

To erase the current program, type

NEW

To verify that the program no longer exists, type
LIST

Y ou can change individual program lines by typing the line number, followed by a new
statement:

10 FOR I=1 to 20
To erase aline, type the line number and press ENTER:

20

Getting Out of Trouble
Occasionally, aprogramming error may cause a program to go into an endless|oop or crash
thesystem. If it’'san endlessloop, you can exit it and returnto theREADY prompt by pressing

CONTROL+C. If that doesn’t work, your only choiceis to press S1 to reset the 8052-BASIC
system. Resetting will erase the program in RAM, so you'll have to re-enter it.

Simple Programs to Try

The following sections offer some short programs to try, to help you explore your system
and become familiar with BASIC-52. Don’t worry if you don’t understand every line of the
programs. Later chapters get into programming in more detail.

Reading Port 1

You can use BASIC-52 to read and write to Port 1 (pins 1-8) on the 8052-BASIC.

The command

PHO.PORT1

will display the hex value of the entire port. Listing 3-1 is aprogram that displaysthe value
of each of the bitsin the port.

Enter each line carefully. Be sureto include all of the punctuation shown. When you run the
program, you should see a display like this:

40 The Microcontroller Idea Book

Powering Up

PORT 1 Bit Values:
Bit = 1

Bit =
Bit
Bit
Bit
Bit
Bit
Bit

oUW N RO
PR R RR R R

If aport pin isopen, or unconnected, its internal pull-up resistor will causeit to read as 1.
If you connect a jumper wire from a port pin to ground, or bring the pin low by driving it
with alogic low output, it should read O. Line 10 in Listing 3-1 brings all of Port 1's bits
high, which enables them to be used as inputs.

Writing to Port 1

You can control the bits of Port 1 by writing to them. Listing 3-2 allows you to set or clear
individual bits. Here's an example of what happens when you run the program:

Enter a bit to set or clear (0-2, 4-7) :7
Enter 1 to set, 0 to clear :0

Enter a bit to set or clear (0-2, 4-7) :3
Do not change bit 3!

The program doesn’t allow you to change bit 3 (P1.3), because the 8052-BASIC circuit
requiresthisbit to be high when accessing external memory (assuming that you’ veincluded
U3B inyour circuit). If you do clear bit 3 accidentally, you' |l crash the system and will have
to reboot.

Listing 3-1. Displays the value of each bit in Port 1.

10 PORT1 = OFFH

20 PRINT “PORT 1 Bit Values:”

30 PRINT “Bit (PORT1.AND.1)

40 PRINT “Bit (PORT1.AND.2) /2

50 PRINT “Bit (PORT1.AND.4) /4

60 PRINT “Bit , (PORT1.AND.S8) /8

70 PRINT “Bit , (PORT1.AND.10H) /10H
(
(
(

I
I

I

80 PRINT “Bit PORT1.AND.20H) /20H
90 PRINT “Bit PORT1.AND.40H) /40H
100 PRINT “Bit PORT1.AND.80H) /80H
110 END

I

I

<N oUW NP O

4
4
4
4
4
4
4
”
I

The Microcontroller Idea Book 41

Chapter 3

Listing 3-2. Allows you to set or clear individual bits of Port 1.

10 INPUT “Enter a bit to set or clear (0-2, 4-7) :”,X
20 IF X=3 THEN PRINT "“Do not change bit 3!” : GOTO 10
30 INPUT “Enter 1 to set, 0 to clear :”,Y

40 IF Y=1 THEN PORT1=PORT1.0R.2**X
50 IF Y=0 THEN PORT1=PORT1.AND.OFFH-2**X
60 END

Run the program and follow the on-screen instructions to set or clear abit. To monitor aport
bit asyou set and clear it, you can use alogic probe, voltmeter, or oscilloscope. For example,
to monitor bit O, place alogic probe on pin 1 of U1, or connect the + lead of a voltmeter to
pin 1 and the - lead to ground.

Accessing Memory

Listing 3-3 alows you to read and write to external RAM. Here is an example of what
happens when you run this program:

Enter 0 (read), 1 (write), or 2 (quit): 1
Free memory ranges from 397H to 1FFFH
Enter an address to write to : 1000H

Enter data to be written : 55H

55H has been written to address 1000H
Enter 0 (read), 1 (write), or 2 (quit): O
External RAM ranges from 0 to 1FFFH
Enter an address to read : 1000H

55H is stored in address 1000H

If you write to an address outside the range specified as free memory, you will overwrite
the RAM currently in use to store your program and run BASIC-52. If you do this
accidentally, your system may crash and you’ll have to reset the system and re-enter the
program.

If you prefer decimal numbersto hex notation, changeeach PHO inthe program to PRINT.
(PHO. includes aperiod; PRINT does not.)

Real-time Clock

Listing 3-4 demonstratesBA Sl C-52's real-time clock by displaying an on-screen 60-second
timer.

42 The Microcontroller Idea Book

Powering Up

Listing 3-3. Allows user to read and write to external memory.

10 DO

20 INPUT “Enter 0 (read), 1 (write), or 2 (quit): ”,RW
30 IF RW=0 THEN GOSUB 70

40 IF RW=1] THEN GOSUB 120

50 WHILE RW<>2

60 END
70 PHO."External RAM ranges from 0 to “,MTOP
80 INPUT “Enter an address to read : ”,A

90 B=XBY (A)

100 PHO.B," is stored in address “,A

110 RETURN

120 PHO."Free memory ranges from “,LEN+512,” to “,MTOP
130 INPUT “Enter an address to write to :”,A

140 INPUT “Enter data to be written :7,B

150 XBY(A)=B

160 PHO.B," has been written to address “,A

170 RETURN

For the timer to be accurate, you must set XTAL to match the timing crystal your system
uses.

Further Experiments

Feel free to continue experimenting with BASIC-52 programs, using the programming
reference as aguide. You can do quite abit with just these circuits.

Listing 3-4. Real-time clock.

10 CLOCK 1:TIME=0:SEC=0
20 DO

30 ONTIME 1,60

40 WHILE SEC<60

50 END

60 TIME=TIME-1

70 SEC=SEC+1

80 PRINT SEC

90 RETI

The Microcontroller Idea Book 43

Chapter 3

Listing 3-5. This program uses BASIC-52’s GET instruction to detect when
the user has pressed a key.

10 CLOCK1:TIME=0:SEC=0
20 PRINT “Press any key to quit”

30 DO

40 ONTIME 1,100
50 G=GET

60 UNTIL G<>0
70 END

100 TIME=TIME-1
110 PHO. PORTI1
120 RETI

Exiting Programs

Some programs, such as Listing 3-3's, continue to run until the user requests to end it. In
BASIC-52, there are several ways to detect that the user wants to stop a program.

Set a User Variable

In Listing 3-3, the program displays a menu of choices on the host computer’s screen. The
program continues to run until the user selects QUIT by entering 2, which sets the variable
RW to 2 and causesthe DO . . . WHILE loop and the program to end.

Use GET

Sometimes, selecting a menu option isn’t convenient or appropriate. Listing 3-5 reads and
displays the value of PORT1 once per second until the user presses any key at the host
computer. The program uses BASIC-52'SGET operator to detect akeypress. GET stores
the ASCII code of a keypress at the host computer. Setting a varialble equal to GET (line
50) causesGET toreset to 0. You can detect akeypress by reading GET periodically. If GET

Listing 3-6. This program will end only when the user presses controL+c.

10 CLOCK 1:TIME=0:SEC=0
20 DO

30 ONTIME 1,100

40 WHILE 1=1

50 END

100 TIME=TIME-1

110 PHO. PORT1

120 RETI

44 The Microcontroller Idea Book

Powering Up

Listing 3-7. This program ends when int1 (pin 13) is brought low and causes
an interrupt routine to execute.

10 CLOCK 1:TIME=0:SEC=0

20 A=0

30 PRINT “Bring INT1 (pin 13) low to end program.”
40 DO

50 ONTIME 1,100

60 ONEX1 200

70 WHILE A=0

80 END

100 TIME=TIME-1

110 PHO. PORTI1

120 RETI
200 A=1
210 RETI

doesn’t equal zero, it means that a key was pressed. In Listing 3-5, when GET no longer
eguals O, the program ends.

Wait for CONTROL+C

You can aways end a program by pressing CONTROL+C at the host’s keyboard. The only
exceptions are runaway programs that have crashed the system and force you to reboot.
Listing 3-6 is an expanded version of Listing 3-5. It continues to read and display PORT1
inan endlessloop (DO...WHILE 1=1), until you press CONTROL+C.

Detect a Switch Press

A final method will end aprogram without any input from the host’s keyboard. You can use
this in stand-alone projects that don’t connect to a host computer at al. Listing 3-7 ends
whenthe8052-BA SIC’spin 13 (INTZ1) goeslow, which causesan interrupt routineto execute.
Bring the pinlow by jumperingit briefly to GND, or connect apushbutton switch asdescribed
in Chapter 7.

The Microcontroller Idea Book 45

Chapter 3

46

The Microcontroller Idea Book

Saving Programs

A

Saving Programs

In Chapter 3's experiments, the BASIC-52 programs that you wrote were stored in RAM.
This is fine for temporary use, but every time you power down, your program disappears
and you have to start over.

Thischapter showsyou two waysto save BASIC-52 programs more permanently: by adding
nonvolatile memory to the BASIC-52 system, and by downloading your programs to your
host system’s disk. The nonvolatile memory may be battery-backed RAM, EEPROM, or
EPROM. You can aso use this memory for storing assembly-language programs or data
that you want to save when you power down or reset. Disk storage is a convenient way to
saveprogramsif you want to edit them off-line, upload themto adifferent BASI C-52 system,
or just save back-up copies.

Nonvolatile Memory Options

One of BASIC-52's handiest features isits programming commands that store programsin
nonvolatile (NV) memory: EPROM, EEPROM, or battery-backed RAM. The commands
assume that the NV memory is addressed beginning at 8000h in external data memory.
With the addition of NV memory, you havetwo areasthat may contain BASIC-52 programs:

the NV memory, addressed beginning at 8000h, and the RAM, addressed beginning at 0. To
distinguish between the two areas, you can call the memory beginning at 8000h the EPROM

The Microcontroller Idea Book 47

Chapter 4

DS1225 DS1213B/C
Ne ot Y 28ph vec dp: ™ 28db vee
AL2 2 27b WE [2 27@:
A7 O3 260 NC 0 3 267 vcc (DS1213B
A6 4 25|10 A8 o[4 25 b ONLY)
AS 5 2410 A9 i s 24 (1B
A4 6 23 ALl] 6 23 b
A3 7 22p OF] 7 22 b
A2 8 21p Alo] 8 21 [
Al o 20 CE 0 9 20 b CE
I . Y Ke] m eV] 10 19 [
peo 11 18]0 DQ6 = IR 18 b
pal 12 17 DQ5 o 12 17 b
pa2 13 16f0 DQ4] 13 16 [
GND []14 s pe3 onp O 14 15 [

ACCEPTS 6264 8K X 8 SRAM

Figure 4-1. Pinouts for Dallas Semiconductor’'s 8K NVRAM and SmartSocket.

space (even though it may contain NVRAM, EEPROM, or EPROM), and call the memory
beginning at O, up to 7FFFh or the top of RAM, the RAM space.

BASIC-52's programming commands are designed to meet the requirements for EPROMs,
using either of two programming a gorithms, or procedures. You can usethe samecommands
to store programsin NVRAM or EEPROM. Like EPROMS, these devices provide nonvola
tile storage—in other words, their contents don’t disappear when power is removed. Plus,
they have two advantages over EPROMs. they don't need any special programming
voltages, and they don’'t need ultraviolet exposure to erase. This makes them much more
convenient to use.

For these reasons, thefirst circuit we'll look at offersachoice of NVRAM or EEPROM for
nonvolatile storage. Later, we' |l add circuitsthat allow you to program EPROMS, for those
who want this option.

NVRAM
Dallas Semiconductor offers NVRAM chips that you can usefor nonvolatile storage. These

work exactly like static RAM, except that they contain a lithium cell and backup circuits
that retain the RAM'’s contents when the main power supply is removed. The backup is

48 The Microcontroller Idea Book

Saving Programs

guaranteed for at least ten years. Dallas also makes a product called the SmartSocket, which
consists of an IC socket with an embedded lithium cell and backup circuits. To create a
NVRAM, you plug your own static RAM chip into the SmartSocket.

Eight kilobytesisaconvenient size that will store many short BASIC-52 programs, or fewer
longer ones. For an 8K NVRAM, you can use a DS1225 NVRAM, or a DS1213B or
DS1213C SmartSocket with a 6264 or similar static RAM. Figure 4-1 shows the pinouts.

The 1213B and 1213C SmartSockets differ only in that the 1213B will also accept a 24-pin
2K SRAM, withpins1, 2, 27, and 28 unused, and the 1213C will also accept a32K SRAM,
which has address inputs at pins 1 and 26.

The DS1225 offers a choice of two write-protect voltages. On the -AB version, write
protection is guaranteed when the power supply isless than 4.5V, and write operations are
allowed when the power supply is greater than 4.75V. The SmartSockets use these same
voltages. On the-AD and -Y versions of the DS1225, write protection is guaranteed when
the supply is less than 4.25V, and write operations are allowed when the supply is greater
than 4.5V. Either type should work in a BASIC-52 system with a regulated +5V supply.
Access times of 250 nanoseconds or less are fine for the NVRAM.

Don't be confused by the fact that Dallas describes its devices by the number of bits they
store, rather than the number of bytes. For example, they call the 8-kilobyte DS1225 a 64K
device.

You can order NVRAMsdirectly from Dallas Semiconductor (no minimum order), and from
other vendors.

EEPROM

The other option for program storage is EEPROM. A typica EEPROM is guaranteed for
10,000 to 100,000 write cycles, compared to infinitewrite cyclesfor NVRAM. Accesstimes
for reading an EEPROM are similar to thosefor static RAM, but writing to EEPROM takes
much longer. Most require 2 to 10 milliseconds after awrite operation before you can access
the chip again. In spite of the drawbacks, I’ ve included EEPROM as an option because an
8K EEPROM may cost less than a comparable NVRAM.

A typical part number for an 8K EEPROM is 2864 or 28C64. Figure 4-2 shows the pinout
for a 28(C)64 EEPROM. Notice that its pinout, too, isvery similar to that of a 6264 static
RAM.

EEPROMSs have two common ways of indicating that they are busy performing a write

operation and are unable to be accessed. In one type, when the EPROM s busy, the data
pinshold thelast-written data, but with one or more bitsinverted. BASIC-52's programming

The Microcontroller Idea Book 49

Chapter 4

2864/5
28C64

(2865 oNLY) BUSY i ™ 28h vec
Al2 u Y 27 WE
A7 iz 26[0 NC
AG 4 2sf1 As
AS s 24|71 A9
A4 e 230 ALl
A3 o7 22 OF
A2 s 210 Ale
Al o 200 CE
AQ 1o 1ofp Dpaz
DQO i1 18fg D6
DO 12 17b pas
DQ2 i3 l6j0 DQ4
GND 14 isfg pa3

8K X 8 EEPROM

Figure 4-2. Pinout for 8K EEPROM.

commands verify each byte after programming it, so the inverted data automatically keeps
BASIC-52 from programming another byte until the EEPROM is ready to receiveit.

Other EEPROM s have a busy output, usually at pin 1, which goes low when the EEPROM
isbusy. For thistype, you can tie the busy output to pin 12 of U1. BASIC-52’s programming
commands wait for a high logic level at this pin after programming each byte. Note that
this means that pin 12 of the 8052-BASIC must be high (or not connected) during
programming of any device. However, using the BUSY output is optional, since program-
ming won't continue until the programmed byte verifies.

Whether you choose EEPROM or NVRAM, be sure to ask for a data sheet for the device
you buy, so you can verify its pinout, capacity, and timing characteristics.

Adding NVRAM or EEPROM

Figure4-3 showstheadded circuitsfor theNVRAM or EEPROM at U8. Becausethecircuits
are an addition to Figure 3-1's circuits, the parts continue the same numbering sequence,
beginning with U8. AND gate U3C isthe third gate of Figure 3-1'sU3. Table4-1 isaparts
list of the components needed to add Figure 4-3's circuitsto Figure 3-1.

50 The Microcontroller Idea Book

Saving Programs

DATA BUS (D@-D7)

N
LOW ADDRESS BUS us
DS1225 8K NYRAM
(AQ-A7)
\ OR
2864 8K EEPROM
HIGH ADDRESS BUS AD 10 i1 Do
(AB-AI5) Ao 1701
Al 9 12 DI
— Al 1702
A2 8 13 D2
A2 1703 —~——==~
A3 7 15 D3
A3 1704 ———~
A4 6 16 D4
A4 1705 ——
A5 5 17 DS
A5 1706 — 2~
A6 4 18 D6
A7__3|h° o797
A7 1708
A8 25
AQ 24 /’:g
AlQ 21 Alo
All 23
All {
A2 21, VPP|— NO CONNECTION
| 261\
800QH — Y
| von 3 29 =51
RESET 28
74HCT 32 vee
. cl4
+5Yy 27 WE Q. 1uF
22 oF GND 14
o WRITE PROTECT
WRITE 2 NV MEMORY —
" WRITE ENABLE B
-PGM PULSE —
POWER AND GROUND PINS
-RDANY
Ic +5y GND
us 28 1
U9 14 7

Figure 4-3. Circuits for adding NVRAM or EEPROM.

The pinout and wiring of U8 are similar to that of the RAM at U7. The data and address
lines are wired exactly the same as for U7. U8 is accessed from 8000h to 9FFFh. This
location is used because BA SIC-52's programming commands assume that the nonvolatile
memory begins at 8000h.

OR gate U9A prevents the NVRAM or EEPROM from being accidentally overwritten
during power-up. When the 8052-BASIC first powers up, its port pins are in an unknown
state for abrief period, until the reset agorithm in the chip brings them all high. During this

The Microcontroller Idea Book 51

Chapter 4

Table 4-1. Parts list for Figure 4-3.

Semiconductors

U8 8-kilobyte NV memory (DS1225 NVRAM or DS1213 SmartSocket with
6264 SRAM or 2864 EEPROM), access time 250 nanoseconds or less
U9 74HCT32 quad OR gate

Capacitors (16WVDC, 20% tolerance)

Cl4 0.1-microfarad ceramic disc
Miscellaneous

A SIP header, 3-terminal, and shorting block

| C sockets

time, thereisasmall chancethat theright combination of outputswill cause awrite operation
to occur at U8.

Since this could destroy the information stored in the chip, we need a way to prevent U8
from being written to for abrief time after power-up. OR gate U9A prevents accessesto U8
until RESET goes low. The delay caused by the charging of R1 through C1 (in Figure 3-1)
ensures that the reset algorithm has enough time to bring the port pins high.

U8's Chip Select (pin 20) goes low only when both of these are true. RESET islow, and
the 8052-BASIC isreading or writing to an address from 8000h to 9FFFh.

Output-enable (pin 22) connects to RDANY, to allow U8 to be accessed as data or program
memory. This enables U8 to store assembly-language routines as well as BASIC-52
programs.

For writing to U8, AND gate U3C allows a choice of two control signals. WRITE is the
conventional signal for writing to data memory. In addition, BASIC-52 uses a special PGM
PULSE signal to store BASIC-52 programs in NV memory beginning at 8000h. Either of
these signals will bring WE on U8 low.

52 The Microcontroller Idea Book

Saving Programs

Jumper J4 isoptional. It enablesyou to write-protect U8 by jumpering WE to +5V. You might
want to do this if you have critical programs or data stored in U8, and you want to be sure
that you don’t overwrite them accidentally.

Wiring Tips

When you add the circuits for NV memory, use sockets for U8 and U9. If you previoudy
tied unused pins 9 and 10 of U3 to ground or +5V, be sure to remove these connections
before you wire the ones shown in Figure 4-3. Since pins 4, 5, 9, 10, 12, and 13 of U9 are

unused CMOS inputs, you should wire these to +5V or ground. You may instead use a
741L.S32 for U9. If you do so, leave the unused inputs open.

Using the Programming Commands

When Figure 4-3's circuit is added, you're ready to power up and try the programming
commands. Begin by entering any simple BASIC-52 program, such as one of the examples
in Chapter 3.

Setting MTOP

If you have a 32K RAM at U7, you have an additional step to perform before you store a
program in U8. On bootup, BASIC-52 tests contiguous memory and sets MTOP to the
highest value it finds below EOOOh. But BASIC-52’s programming commands won't work
unless MTOP is below 8000h. To enable program storage, type the following command:
MTOP=7FFFh

This ensures that BASIC-52 won't try to store RAM programs, variables, or stringsin the
areathat you' ve reserved for permanent program storage (although it doesn’t prevent you
from writing to the areawith BASIC-52's XBY operator). If U7 isan 8K device, MTOPis
1FFFh, well below 8000h, so you don’t have to worry about changing it.

Saving a Program

To copy the current program from U7 to U8, type

FPROG

The screen will display the number 1, indicating that thisis the first BASIC-52 program to
be stored in the device, and after a short delay, the READY prompt should return.

PROG isan aternate command that uses aslower programming algorithm, and should also
work.

The Microcontroller Idea Book 53

Chapter 4

If BASIC-52 is unable to program the chip, you'll seethis:
ERROR: PROGRAMMING

If you get this error message, double-check your wiring. When the programming command
executes, pins 20, 22, and 27 should toggle, aong with the address and data lines.

Running a Stored Program

When you have a program saved, you can run it from the NV memory. BASIC-52's RAM
and ROM commands switch from RAM mode, where BASIC-52 runs the program stored
in RAM (U7), to ROM mode, where it looks in U8 for programs to run. When you've
programmed successfully, run your program by typing

ROM
RUN

or
RROM

You can store multiple programs, space permitting, and run each by specifying its number.
For example, to run the second program stored, type

RROM2

To return to editing programs in RAM, type

RAM

Another useful command is XFER. In ROM mode, type
XFER

to copy the current program from ROM into RAM, where you can edit it, and then use
FPROG to store the revised version in U8 if you wish.

Adding Bootup Options
The commands FPROG1-FPROG6 enable you to store additional information besides
programs. FPROG1 saves the current baud rate and causes BASIC-52 to boot immediately

to the READY prompt, without waiting to receive a SPACE character. FPROG2 saves the
current baud rate and also tells BASIC-52 to automatically run the first program in NV

54 The Microcontroller Idea Book

Saving Programs

memory on bootup. Thisiswhat allows you to disconnect the system from its host and run
it as a stand-alone system.

You can aso permanently store avaue for MTOP in U8. If you have a 32K RAM at U7,
storing MTOP will ensure that you can use FPROG, and that your stored programs will be
preserved when you reboot or power down.

If U7is32K, type

MTOP=7FFFH
FPROG3

Now, when your system boots up, MTOP will automatically be set to 7FFFh. FPROG3 aso
savesthe baud rate and bootsto the READY prompt without requiring you to pressthe space
bar.

If you want to save M TOPand al so run aprogram on bootup, use FPROG4, which combines
the features of FPROG2 and FPROG3. FPROGS is another useful command. It prevents
BASIC-52 from clearing external data memory on bootup. FPROG6 enables you to add
your own assembly-language reset routine.

If you use FPROG2-FPROG6, BASIC-52 will no longer auto-detect your host’s baud rate.
You must usethe baud rate and crystal valuethat werein use when you executed the FPROG
command.

Erasing NV Memory

Eventually, your NVRAM or EEPROM will fill with programs, or you may just want to
erase what you' ve stored and start fresh. Listing 4-1 is a program that erases U8 by writing
OFFhto all locations.

To use the program, enter the listing and type RUN. The READY prompt will return when
erasing is complete. Line 30 verifies each erasure, and is required only for EEPROM,

Listing 4-1. Erases NVRAM or EEPROM.

10 FOR I=8000H TO 9FFFH

20 XBY (I)=0FFH

30 IF XBY (I)<>0FFH THEN GOTO 30
40 NEXT T

50 END

The Microcontroller Idea Book 55

Chapter 4

because of its longer write times. The program erases all of the stored programs and any
options selected with FPROG1-6 in U8.

Adding more NVRAM or EEPROM

If you want to add an additional 8K of NV RAM or EEPROM, wire another circuit exactly
like Figure 4-3's, except connect pin 20 of the new NVRAM or EEPROM to AOOOh (pin
10 of U4) ORed with RESET, so that the chip will be accessed from A00Oh to BFFFh.

Adding EPROM

Adding EPROM requires more circuitry than NVRAM or EEPROM, because an EPROM
must have a programming voltage at its VPP pin during programming. To use the faster
FPROG commands, which follow Intel’s Intelligent programming algorithm, you should
also raise the EPROM’s supply voltage (VCC) to +6 volts during programming.

Although EPROMSs do require additional components, once you have them in the circuit,
you can use the 8052-BASIC system as a genera-purpose EPROM programmer, as
described in Chapter 13. You can store assembly-language programsor any information that
you want to save in EPROM, whether it's for use by the 8052-BASIC system or another
project.

EPROM Types

Since EPROMs were first developed in the 1970's, each generation of devices has allowed
larger capacities, faster programming, and reduced programming voltages. Although the
recommended programming algorithms, or procedures, for EPROMs are aike in many
ways, the details often vary, depending on the device and manufacturer.

Programming Algorithms

For critical applications, there is no substitute for consulting the EPROM’s data sheet and
following its recommendations exactly. But for general use, you can get reliableresultswith
most EPROM s by using one of the two algorithms supported by BASIC-52.

50-millisecond programming. Thisalgorithm is an older, dower procedure. To program a
location in the EPROM, you apply a programming voltage to the VPP input, set the address
and data lines to the desired values, and apply a 50-millisecond programming pulse at the
PGM input to write the datainto the EPROM at the selected address. You then increment the
address, apply the new data and programming pulse, and continue in this way until all
locations are programmed. After programming, you compare the EPROM’s contents to the
programming datato verify that all locations programmed correctly. (BASIC-52 variesfrom
this standard by verifying each location immediately after programming.)

56 The Microcontroller Idea Book

Saving Programs

Thisisthe recommended algorithm for older, smaller-capacity EPROMs like the 2-kilobyte
2716 and 4-kilobyte 2732, and some 8-kilobyte 2764s. These typically require a program-
ming voltage of 21 or 25 volts at the EPROM’s VPP input.

Intelligent programming. This algorithm uses much shorter programming pulses, and
verifies after each attempt. After each 1-millisecond programming pulse, you read the
EPROM location to seeif the programming succeeded. If not, you try again, up to 25 times.
When the location verifies, you apply afinal pulse equal to three times the total amount of
programming pulses already applied. For example, if it takes five attempts to verify, you
would apply afinal 15-millisecond pulse. Finally, when all locations are programmed, you
verify each once more.

For Intelligent programming, VPP is typically +12.5 volts, and vcc, the EPROM’s main
power supply, is aso raised from +5 to +6V during programming.

Intelligent programming is the recommended algorithm for many 8K EPROMSs. Intel’s 2764
EPROM uses 21V, 5—miillisecond programming, while the 2764A uses 12.5V, Intelligent
programming.

Quick-pulse programming. Some CMOS 8K EPROMSs (27C64) can use an even faster
programming algorithm called Quick-Pulse. In Quick-Pulse programming, VPPistypically
12.75V,vCCis6.25, and the programming pulses are 100 microseconds. BASIC-52 doesn’t
offer Quick-Pulse programming as an option.

Choosing an algorithm. As arule, you can program an EPROM using adower algorithm
than the recommended one, so you should be able to program any 12.5V EPROM with
50-millisecond programming, with VPP at 12.5V and vVCC at +5V. And, any EPROM that
can use Quick-Pulse programming should also program with the Intelligent or 50-millisec-
ond programming algorithm and voltages. But whatever you do, don’'t exceed the recom-
mended programming voltages for the device at vCC and VPP

EPROM Pinouts

Figure 4-4 shows the pinout for a 2764 8K EPROM. Once again, the pin functions and
locations are similar to those in an 8K RAM. During normal operation, the data pins
(DQO0-DQY7) are read-only. Pin 27, which is Write Enable (WE) on RAM, isPGM, or program

pulse, on the EPROM, and pin 1, which has no connection on RAM, iSVPP, or programming
voltage, on the EPROM.

EPROM-programming Circuits

Figure 4-5 shows additions to Figure 4-3's circuits that enable you to program a 12.5V 8K
EPROM instead of NVRAM or EEPROM. Table4-2 isapartslist for Figure 4-5'scircuits.

The Microcontroller Idea Book 57

Chapter 4

2764
27C64
vee i N~ 28h vee
Al2 2 2710 PGM
A7 03 26b NC
A6 14 25 A8
AS 05 2410 A9
A4 a6 23pb ALl
A3 7 222 OE
A2 mE 21p Aloe
Al 9 20pb CE
AQ 10 lop DaQ7
Do I 18 DaQ6
Dol 12 178 DQ5
DQ2 I3 160 DQ4
GND 14 [1sg DQ3

8K X 8 EPROM
Figure 4-4. Pinout for 8K EPROM.

The components continue the numbering sequence begun in Figures 3-1 and 4-4. The
additional circuits for the PROG commands are at pin 1 of U8. Jumper J5 allows you to
configure the memory site for the type of NV memory you' re using.

On NVRAM or EEPROM, pin 1 has no connection (or, on some EEPROMS, it's a BUSY
output). On the EPROM, it's VPP, which is +5V during read operations and 12.5V during
programming. PGM EN (pin 6 on the 8052-BASIC) controls the programming voltage by
going low during programming operations and otherwise remaining high.

To prevent accidental programming during power up, OR gate U10A’s output remains high
until RESET goeslow. U10isnot an ordinary OR gate—it'sa 75453 periphera driver. Unlike
ordinary logic gates, U10’s open-collector output can pull up to 30V without damaging the
chip. The output also has much greater current-sinking ability than other logic gates (up to
300mA), and can easily provide base current to drive transistor Q1.

When pin 3 of U10A ishigh, Q1 isoff, and VPP connectsto +5V through germanium diode
D2. Thediode'svoltagedropisjust 0.3V, so VPPisactually at about 4.7V. Intel’s data sheets
specify that read operations require VPPto be at least 3.8V for the 2764A, or vcc-0.7V for
the 27C64, so 4.7V is within the specifications.

58 The Microcontroller Idea Book

Saving Programs

CIRCUITS FOR EPROM PROGRAMMING WITH PROG COMMANDS (50-MSEC PROGRAMMING)

+12.5v +5y
al N
PN29@7 o1
IN270
75453
PERIPHERAL DRIVER
J5 — Cl4 RI2
TO U8, PIN | EPROM TN 0. LuF @K
(VPP) ©
NVRAM/EEPROM|O] (NO CONNECTION)
+5Y
TO U8, PIN 28 -
(VCC)
ADDITIONAL CIRCUITS FOR EPROM PROGRAMMING WITH FPROG COMMANDS
(INTELLIGENT PROGRAMMING) L6V +5Y
P
e grzuzgw N
D2
RESET V270
75453
PERIPHERAL DRIVER
RIS
EPROM FPROGI—O J6 10K
TO U8, PIN 28 (VCC) 9
EPROM PROG/NVRAM/EEPROM|Q +5V
Figure 4-5. Additional circuits for programming EPROMSs.
The Microcontroller Idea Book 59

Chapter 4

Table 4-2. Parts list for Figure 4-5.

Semiconductors

D2,D3 1IN270 or similar germanium diode
Q1,Q2 PN2907 or similar PNP general-purpose transi stor
ul10 75453 dual peripheral OR driver

Resistor s (1/4-watt, 5% tolerance)
R11,R14 4.700-ohm

R12,R13 10,000-ohm

R15,R16 10,000-ohm
Capacitors(16WVDC, 20% tolerance)
C15 0.1-microfarad ceramic disc

Miscellaneous

J5-J6 SIP header, 3-terminal, and shorting block

When BASIC-52 executes a programming command, PGM EN goes low, pin 3 of U10 goes
low, and Q1 switches on. This brings VPP to 12.5 volts. Diode D2 prevents current from
flowing into the 5V supply. When programming is finished, PGM EN goes high again, and
VPP returnsto +4.7V.

Resistor R10 limits U10A’s output current, and R11 ensures that pin 3 of U10 pulls up to
12.5V. Capacitor C14 provides power-supply decoupling.

If you happen to have an older 21V EPROM, the circuit should aso work with a +21V
supply in place of +12.5V.

FPROG Circuits

If you want to use the FPROG commands for faster EPROM programming, additional
circuits are required. These are identical to the circuits that switch VPP, except that they
instead switch VCC to +6V during programming.

With the FPROG circuitsshown in Figure4-5, during normal (non-programming) operation,
VCC is actualy dightly less than +5V, due to D3's voltage drop. This should cause no

60 The Microcontroller Idea Book

Saving Programs

problemswith EPROM sthat have a10 percent power-supply tolerance; in other words, ones
that are guaranteed to operate from supplies of 4.5to 5.5V. You do want to be sure that your
main supply isasolid +5V, or even alittle higher.

Thedata sheetsfor some EPROM s specify 5-percent tolerance: the supply must be between
4.75 and 5.25V to guarantee operation within the specifications. In this case, you will be
operating near or just below therecommended supply voltage, especially if your main supply
is slightly under +5V. When you are not programming the EPROM, you can move J6 to
connect pin 28 directly to +5V. But overal, 10-percent-tolerance EPROMSs are a better
choice for this circuit.

If you are using aNVRAM or EEPROM, set J6 to +5V, since VCC must remain at 5V for
these devices.

Power Supplies for Programming

You have severa options for creating the programming power supplies of +12.5V and,
optionally, +6V.

Benchtop Supply

For occasional use, if you have a benchtop supply that can supply the needed outputs, you
can add terminal sto the appropriate connectionsin your BASI C-52 system, and connect the
supply leads to them when needed.

Adjustable Regulator

Figure 4-6 shows a circuit that regulates a DC supply of 15 to 18V to 12.5V or 6V. For the
15V supply, you can use a benchtop supply, awall-transformer AC-to-DC adapter, or even
two 9-volt transistor batteries connected in series. The supply must have a DC output, but
it doesn’'t have to be regulated. You'll need one LM 317 and an R1 and R2 for each output
voltage, but you can power both LM317’s from the same supply.

Typical current requirements for programming an NMOS 2764A are 50 milliamperes at
12.5V and 75 milliamperes at 6V, or 125 milliamperes total. For a CMOS 27C64, it's 30
milliamperes for each, or 60 milliamperes total.

Each regulating circuit uses an LM317 adjustable regulator. You set the output voltage of
the LM317 with R1 and R2, using the formulashown. The LM 317 createsa constant 1.25V
reference across R1. The current through R1 also flows through R2, and the voltage across
the pair of resistors is the regulator’s output.

Intel’s EPROM data sheets specify this range for the programming voltages:

The Microcontroller Idea Book 61

Chapter 4

LM317
+15V TO +18V DCO—IN ouT VouT
REGULATED DC VOLTAGE
ADJUST
R
IADJl 300
A — IN
R2 E — oUT
5K —— ADJusT
LM317
_ R?
VOUT - 1.25(1 + 52) + IADJ(R2)

TYPICAL IADJ = 50uA

ADJUST R2 FOR DESIRED VOUT.
OR, USE THESE VALUES FOR Rl AND R2:

‘ TOLERANCE
RESISTOR | VOUT | 5% 1%
R1 ANY | 240 237
R2 12.5]12.2K 2.15K
R2 6 910 931

Figure 4-6. Power supply circuit for EPROM-programming voltages.

VPP: 12V to 13V
VCC: 5.75V t0 6.25V

If you use 5%-tolerance resistors for R1 and R2, you may have to vary the value of R2 for
the proper output, especially to meet the requirement for Vcc. Or, you can use a 5K
potentiometer for R2 and adjust for the desired output, or use 1%-tolerance resistors for a
more precise output.

You can wire the LM 317 circuits to your 8052-BASIC circuit board, and add terminals or
jacksfor connecting a 15V supply. Wirethe LM317’s output to the appropriate connections
in Figure 4-5.

Switching Regulators

A third way to generate programming voltages is to use switching regulators like those

available from Maxim Semiconductor. These can create the programming voltages from
your +5V supply. For example, the MAX633 can create outputs of 6 and 12.5V froma+5V

62 The Microcontroller Idea Book

Saving Programs

supply. The chip requires an additional inductor and capacitor, plus two resistors to set the
output voltage. Maxim’s data books have more details about this and similar chips.

Storing Programs on Disk

WithBA SIC-52' s ahility to store programsin on-board memory, disk storageisn’t necessary.
But storing programs on the host system’s disk is convenient, since you can save as many
programs as you want without worrying about running out of program memory. Since the
programs are stored as ASCI| text, you can write or edit them with any text editor, and then
upload them as needed to the target system.

M ost communi cations software allows you to upload and download files. In Procomm Plus,
you use the PGUP and PGDN keys. In the Windows Terminal Accessory, use the Transfers
menu.

Uploading to the 8052-BASIC System

When you upload aprogram to the 8052-BA SIC system, you haveto ensurethat BASIC-52
has enough time to process each line before the next one arrives. If thereisn’t enough time,
you' [l have missing characters or lines in uploaded programs. There are a couple of ways
to ensure that your uploads are complete.

Most software allows you to add delays after each transmitted line or character. You can
experiment with different valuesto find the shortest delaysthat allow you to upload reliably.
If you keep your program lines short, the delays between lines can be shorter.

If these options aren’t available, try using aslower baud rate, which givesBASIC-52 alittle
more time to process each line before the next one arrives.

Downloading to the Host Computer

To download a BASIC-52 program from the target’s RAM to the host’s disk, type LIST
to list the current program, but before you press ENTER to execute the command, set up your
host’s software to download, or receive, an ASCII file. When prompted, specify afilename.
When the transfer isready to go, press ENTER to send your program to the host. When you
see the READY prompt, end the transfer by whatever means your software requires. (In
Procomm Plus, presseSCAPE.) You should now have afile on disk containing the program
you just listed.

You can test your download by erasing the program inthe 8052-BA SIC system’sRAM, and
then uploading it back into RAM.

The Microcontroller Idea Book 63

Chapter 4

First, type NEW to erase the program. To restore your program by uploading it from disk, set
up your host’s software to upload, or send, an ASCII file, and enter the name of your
previously downloaded file. Asthefile loads, you'll see each program line on screen. The
file will contain a READY prompt after the program listing. This causes BASIC-52 to
display an error message, which you canignore. Type LIST toview the uploaded program,
and type RUN torunit.

With BASIC-52 programs on disk, you can use any text editor to view or modify the
program. Save the file as pure ASCII text, with no formatting commands added. You can
also useyour text editor to create aprogram from scratch, then upload it to BASIC-52, rather
than typing the lines using BASIC-52's line editor.

64 The Microcontroller Idea Book

Programming

5

Programming

When you have your 8052-BA SI C system up and running, you'’ re ready to start writing and
running your own programs. This chapter isan introduction to the BASI C-52 programming
language. It includesasummary of BASIC-52'sabilities, some examplesthat illustrate what
you can do with it, plus tips for writing and debugging programs.

For a complete reference to BASIC-52, see the BASIC-52 programming manual (either
version), which includes many more examples and details about the language and how it
works. You can learn alot about BASIC-52 by browsing through the programming manual
and experimenting on your own.

Programming Basics

Like other BASIC programs, BASIC-52 programs are built around a set of keywords, or
reserved words. Each keyword has a specific meaning to the BASIC-52 interpreter. or
example, the program line PRINT XTAL tells BASIC-52 to find the stored value of the
XTAL operator and send it to the console input device (the serial port of the host computer),
which will then display the value it receives.

If you're familiar with BASIC programming, most of BASIC-52's keywords and conven-
tions will be familiar. If you have little programming experience, or if your experience is
with assembly language, C, Pascal, or another language, you'll have more to learn. But on
the whole, BASIC-52 makes it easy to quickly write and test your programs.

The Microcontroller Idea Book 65

Chapter 5

Writing a short BASIC-52 program involves these steps:

Define what you want to do

Write program lines to accomplish it
Test the results

As necessary, revise and retest

Longer programsinvolve the same basic steps, except that you can divide the program into
a series of smaller tasks, or modules, and program and test each individually. Then, when
the modules are working, you can combine them in one big program and test the resullt.

Modular programming can save a lot of headaches by limiting the amount of untested
program code you have to work with at onetime. A long, untested program almost certainly
contains many errorswill be hard to find and fix. It's much easier in the long run to test the
pieces first, and BASIC-52 makes this easy to do.

Command and Run Modes

BASIC-52 has two modes of operation: command and run. Command mode refers to
anything you type without aline number. BASIC-52 executes these linesimmediately after
you press ENTER. Run mode refers to running stored programs with the RUN command.
A program consists of aseries of program lines, with each line beginning with aline number.

BASIC-52 includes some keywords that you can use only in command mode, but not in
programs. PROG is an example. Most of BASIC-52's other keywords are usable in either
command or run mode. A few, suchasDO. . .WHILE, are usablein RUN mode only.

Tips for Writing BASIC-52 Programs

The following advice is intended to make your programs easier to write and debug, and to
help you avoid some common mistakes:

e Number program lines by 10s. Each linein aBASIC-52 program must begin with a
line number. BASIC-52 uses the numbers to order the statements. Traditionally, BASIC
programs begin at line 10, and count up in multiples of 10: 20, 30, and so on. Thisway,
if you later discover that you need to add afew linesin the middle, you can, using the
unused numbers that remain.

¢ Dividelong programsinto modules. Break up big projects. Use subroutines for
independent functions. A subroutine isablock of statements that the main program
jumps to with aGOSUB statement. At the end of the subroutine, aRETURN statement
causes the program to jump back to the program line following the GOSUB statement.

66 The Microcontroller Idea Book

Programming

Subroutines have two advantages. First, they help you to break up your program code
into discrete units, with each having a specific purpose. This makes the program code
easier to debug and easier to understand in general, especialy if you return to it aweek,
month, or year after writing it when the details are no longer fresh in your mind.
Second, subroutines make it easier to reuse your code if you have asimilar task in
another project. For example, all or most of the code involved with controlling a display
module can usually be written as a subroutine, or perhaps a series of subroutines. This
way, if you want to use the same display module in more than one project, you can
reuse the code without having to pick through your previous programsto find the
program lines that you need.

e Keep program lines short. Short lines are easier to edit with BASIC-52's line editor,
which requires retyping the entire line to make a change. They’re al'so easier to read. If
you upload programs from disk, shorter lines can eliminate problems caused by
BASIC-52' s not having enough time to process each line before the next one arrives.
Although BASIC-52 alows you to place multiple statements on one line, with up to 79
characters per line, shorter is better.

There are two situations where you might want to combine a series of short lines into
fewer, longer program lines: when the program has to execute as fast as possible, or
when you need to store the program in the smallest possible space. Even then, though,
you can develop the program with short lines, and combine them only after the program
is debugged and ready for permanent storage.

¢ Check syntax and spelling carefully. BASIC-52' s syntax consists of the rules of
grammar and punctuation that your program lines must follow. For example, aFOR
loop must include avariable, limits, and aNEXT instruction. Leave any of these out,
and your loop won't work. There’ s no room for spelling errors either. BASIC-52
doesn’t know that you meant LT ST when you typed LSIT.

e Document your programs. Many of BASIC-52' s keywords aren’t too hard to
decipher. For example, it makes sense that the STOP instruction halts program
execution. But your own comments throughout the program can help you remember
why you wrote each program line, and what it’ s supposed to accomplish.

BASIC-52 allows you to add comments, preceded by REM (remark). Try to write
comments that do more than just define the keywords in the line. Also explain the
purpose behind what you are doing. For example, this comment

10 REM read value from external memory
20 A=XBY (OFEOQOOH)

does nothing more than define the BASIC-52 instruction that follows. In contrast,

The Microcontroller Idea Book 67

Chapter 5

10 REM Read the states of switches 1-8
20 A=XBY (OFEOOH)

tells you why you are executing the instruction.

The problem with adding comments to BASIC-52 programs is that they slow program
execution. They also make the program longer, so that it needs more memory. So you
might want to keep comments to a minimum in the final version that you storein NV
memory.

Y ou can, however, store fully documented copies of your program on disk. If you wish,
you can use your personal computer’ s text editor to add comments on unnumbered
lines, likethis:

REM Read the states of switches 1-8
20 A=XBY (OFEOOh)

Then, as you upload the program to your 8052-BASIC system, al of the lines will
display on the host computer, but BASIC-52 will store only the numbered lines,
discarding the unnumbered remarks.

e Use short variable namesfor faster execution speed. BASIC-52 allows variable
names of up to eight characters. Programs with shorter variable names will run faster
and require less memory to store. Even if you limit yourself to 1- and 2-letter variables,
you still have hundreds to choose from. Longer names, such asREVERSE, QUIT, and
so on have the advantage of being more meaningful—it’s easier to guess their meaning
without adding comments. So there are times when you might choose alonger name.
But longer names can cause other problems, as the next paragraph explains.

e Be surethat variable namesdon’t contain keywords. In BASIC-52 you can’t name a
variable ON, because ON is already defined by BASIC-52. You also can’'t name a
variadble MONTH, ONE, ACTION, or any other word that contains ON. Short variable
names are much less likely to contain an embedded keyword. Also be aware that
BASIC-52 identifies a variable only by itsfirst and last characters, plusits length, so,
for example, it considers MAXTMUM and MINIMUM to be the same variable, while MAX
and MIN are different.

e Avoid variablesthat begin or end with theletter F. BASIC-52 has a couple of bugs
relating to variable names that begin or end in F. Specifically, when F isthe last
character in a variable name followed by a space, BASIC-52 drops the F from the
variable name. And, if you should nameavariable Fp, FPR, or FPRO, and follow
the name by a space, BASIC-52 will also drop the F from the name. The easiest way to
avoid problemsisto avoid any variable name that begins or endsin F.

68 The Microcontroller Idea Book

Programming

e Hexadecimal numbersthat begin with A through F must have a leading 0, and all
hexadecimal numbers must end in H. Here are some examples of valid hexadecimal
numbers:

Valid Hex Number Decimal Equivalent
ODH 208

O0AH 10

15H 21

OFFFFH 65,535

OCH 12

Here are some invalid hex numbers, and avalid hex number that doesn’t have its intended
value:

Invalid Hex Number Problem

FFH no leading 0

oC no trailing H

10 (intended as decimal 16) no trailing H. BASIC-52 will interpret at

decimal 10 (OAH)

BASIC-52 Bugs and Things to Watch Out For

This section is a summary of other bugs and other minor problems with BASIC-52 to be
aware of as you program. Many of BASIC-52's bugs and limits have been eliminated in
newer versions of BASIC-52 developed by other sources, described in Chapter 15.

Assembly-language Issues:

In external code memory, if 2002h contains 5Ah and bit 5 at 2048h is set, BASIC-52 will
try to call a user-written token table. If 2001h contains OAAh, BASIC-52 will try to call a
user-written reset routine at 2090h. If the expected table or routineisn’t present, the system
will crash. (See Chapter 13.) Solution: avoid writing to code memory at 2001h, 2002h, and
2048h. (In Figure 3-1's circuit, the RAM in this area (if any) is accessed as data memory
only, so you don’'t have to worry about this.)

The Microcontroller Idea Book 69

Chapter 5

The address following a CALL instruction must be at least 2000h.
Miscellaneous ltems:
Floating-point calculations have errors when the numbers are very large or very small.

The value returned for the ASC (character) operator is incorrect for these seven
characters:

+ - = . 2?2 | *

ONTIME and ONEX1 will not cause interrupts during an INPUT statement. User delay in
responding to an INPUT may cause the program to miss interrupts.

Finding Program Errors

Writing a program that does what you want isn’t always easy. A single missing character or
program line can cause a program to stop in its tracks, or continue to execute but with
unintended results, or, worst of all, crash the system and require rebooting.

BASIC-52 will detect and warn you of many programming errors. If BASIC-52 detects an
error when you try to run a program, it will display the line containing the error, along with
an error message, and will stop the program at that point.

If you get an error message, examine the offending line carefully. Many problems are due
to syntax errors, where missing or incorrect characters make it impossiblefor BASIC-52 to
interpret the program line correctly.

Other times, a program will run without problems, but it won’'t do what you intended. For
example, it'seasy to forget that ahexadecimal number beginning in A-F must havealeading
zero, or that al hexadecima numbers must end in H. Each of these BASIC-52 statements
has a different result, and none will produce an error message:

BASIC-52 Statement Resulting Action

XBY (1000H) =20H Writes 20H to 1000H in external data memory
XBY (1000) =20 Writes 14H to 3E8H in external data memory
XBY (1000H) =20 Writes 14H to 1000H in external data memory
XBY (1000) =20H Writes 20H to 3E8H in external data memory

70 The Microcontroller Idea Book

Programming

It can be hard to find an error that gives no error message. The best way to narrow the search
is to write and test your programs in small modules, so that the amount of code to search
through remains manageable.

The Microcontroller Idea Book 71

Chapter 5

BASIC-52 Keywords by Function

Thefollowingisaquick referenceto BASIC-52's keywords, grouped by function. After this
is a more detailed list, arranged alphabetically, with the syntax and a brief description of
what each keyword does. Some of thekeywords, likeRUN, LIST, and PRINT, areones
that you'll use constantly. A few, like NULL or UIO0, have specialized uses that you may
never need. Again, for amore complete reference, seethe BASIC-52 programming manual .

Running and Listing Programs

CONT
LIST
NEW
RAM
REM
ROM
RROM
RUN
STOP
XFER

Storing Programsin NV Memory

FPROG
FPROG1-FPROG6
PGM

PROG
PROG1-PROG6

Program Control Structures
(loops and subroutines)

DO UNTIL

DO WHILE

END

FOR TO [STEP] NEXT]
GOSUB

GOTO

IF THEN [ELSE]

ON GOSUB

ON GOTO

RETURN

72

Printing and Displaying I nformation on
the Host Computer

PHO .
PHI1.
PRINT, P., °?

Additional PRINT Formatting

CR
SPC
TAB
USING, U.

I nput/Output

CBY
DBY
GET
INPUT
LIST#
NULL
PORT1
PHO. #
PH1 . #
PRINT#, P#, 2#
XBY

System Control Values

BAUD
FREE
LEN
MTOP
STRING

The Microcontroller Idea Book

Programming

Math Operators Data Storage

= ASC

+ CHR

- CLEAR
CLEARS
DATA

* % DIM

> LD@

< POP

<> PUSH

>= READ

<= RESTORE

ABS sT@

ATN

Cos Timersand Interrupts

EXP

INT CLEARI

LET CLOCKO

LOG CLOCK1

NOT IDLE

PI IE

RND P

SGN ONERR

SIN ONEX1

SOR ONTIME

TAN PCON
PWM

Logical Operators RCAP2
RETI

.AND. T2CON

.OR. TCON

.XOR. TIME
TIMERO

Assembly-language I nterfacing TIMER1
TIMER2

CALL TMOD

LIST@

PHO.d

PH1.@

PRINT@, P@, 2@

UI0

UIl

Uuoo0

Uo1l

The Microcontroller Idea Book

73

Chapter 5

Quick Reference to BASIC-52

This quick reference to the BASIC-52 programming language lists the keywords al phabeti-
cally, along with brief descriptions of function and use.

Conventions
The reference uses the following typographic conventions:

KEYWORDS (boldface uppercase)
BASIC-52 keywords

placeholders (italics)
Variables, expressions, constants, or other information that you must supply

[optional items] (enclosed in square brackets)
Items that are not required

repeating elements... (followed by ellipsis (three dots))
You may add more items with the same form as the preceding item.

C = command mode

R =run mode
variable = expression CR
Assignsavaueto avariable
expression = expression CR
Equivalence test (relationa operator)
expression + expression CR
Add
expression - expression CR
Subtract
expression * expression CR
Multiply

74 The Microcontroller Idea Book

Programming

expression / expression CR
Divide
expression ** expression CR

Raises first expression to value of second expression (exponent)

expression <> expression CR
Inequality test (relational operator)

expression < expression CR
L ess than test (relational operator)

expression > expression CR
Greater than test (relational operator)

expression <= expression CR
Less than or equal test (relational operator)

expression >= expression CR
Greater than or equal test (relational operator)

?
Same as PRINT

ABS (expression) CR
Returns the absolute value of expression

expression .AND. expression CR
Logical AND
AscC(character) CR

Returns the value of ASCII character

ATN(expression) CR
Returns the arctangent of expression

BAUD expression CR
Sets the baud rate for LPT (pin 8). For proper operation, X TAL must match the
system’s crystal frequency.

CALL integer CR
Cdlls an assembly-language routine at the specified address in program memory.

The Microcontroller Idea Book 75

Chapter 5

CBY/(expression) CR
Retrieves the value at expression in program, or code, memory.

CHR(expression) CR
Converts expression to its ASCII character.

CLEAR CR
Setsall variablesto O, resets al stacks and interrupts evoked by BASIC.

CLEARI CR
Clears dll interrupts evoked by BASIC. Disables ONTIME, ONEX1.

CLEARS CR
Resets BASIC-52's stacks. Sets control stack = OFEh, argument stack = 1FEh, in-
ternal stack = valuein 3Ehininterna RAM.

CLOCKO CR
Disables the real-time clock.

CLOCK1 CR
Enables the real-time clock.

CONT C
Continues executing program after STOP or CONTROL+C.

Cos(expression) CR
Returns the cosine of expression

CR
PRINT option. Causes a carriage return, but no line feed, on the host display.

DATA expression [,...,expression] R
Specifies expressions to be retrieved by aREAD statement.

DBY/(expression) CR
Retrieves or assigns a value at expression in internal data memory.

DIM array name[(Size)] [,...array name(size)] CR
Reserves storage for an array. Default sizeis 11 (0-10). Size limits are 0-254.
Example:

DIM B(100)

Reserves storage for 100-element array B

76 The Microcontroller Idea Book

Programming

DO: [program statements|: UNTIL relational expression R
Executes all statements between DO and UNTIL until relational expressionis
true.

DO: [program statements| : WHILE relational expression R
Executes all statements between DO and WHILE until relational expression is
false.

END R
Terminates program execution.

EXP (expression) CR
Raises e (2.7182818) to the power of expression

FOR counter variable = start-count expression CR
TO end-count expression [
STEP count-increment expression] : [program statements] :
NEXT [counter variable]

Executes all statements between FOR and NEXT the number of times specified by

the counter and step expressions.

FPROG, FPROG1-FPROG6 C
Like PROG, PROG1-PROG6, but using Intelligent programming algorithm.

FREE CR
Returns the number of bytes of unused external data RAM.

GET R
Contains the ASCII code of acharacter received from the host computer’s key-
board. After a program reads the value of GET (For example, G=GET), GET re-
turnsto O until a new character arrives.

GOSUB line number R
Causes BASIC-52 to transfer program control to a subroutine beginning at line
number. A RETURN statement returns control to the line number following the
GOSUB statement.

GOTO line number CR
Causes BASIC-52 to jump to line number in the current program.

IDLE R
Forces BASIC-52 to wait for ONTIME oOr ONEX1 interrupt.

The Microcontroller Idea Book 77

Chapter 5

= CR
Retrieves or assigns a value to the 8052’s special function register |E.

IF relational expression R
THEN program statements
[ELSE] [program statements]
If relational expression istrue, executes program statements following THEN. If
relational expression is false, executes program statements following ELSE, if
used.

INPUT [“Prompt message”][,] variable[,variable] [,...variable] R
Displays a question mark and optional prompt message on the host computer and
waits for keyboard input. Storesinput in variable(s). A commabefore the first
variable suppresses the question mark.

INT(expression) CR
Returns integer portion of expression.

IP CR
Retrieves or assigns a value to the 8052’s special function register 1P,

LD@ expression CR
Retrieves a 6-byte floating-point number and places it on the argument stack. Ex-
pression points to the most significant byte of the number.

LEN CR
Returns the number of bytesin the current program

[LET] variable = expression CR
Assigns avariable to the value of expression. Use of LET is optional.

LIST[line number][-line number] CR
Displays the current program on the host compuiter.

LIST# [line number][-line number] CR
Writes the current program to LPT (pin 8).

LIST@ [line number][-line number] CR

Writes the current program to a user-written assembly-language output driver at
40C3h. Setting bit 7 of internal data memory location 27H enables the driver.

78 The Microcontroller Idea Book

Programming

LOG(expression) CR
Returns natural logarithm of expression.

MTOP [=highest addressin RAM program space] CR
Assigns or reads the highest address BASIC-52 will use to store variables,

strings, and RAM programs. Usually 7FFFh or lower, since EPROM space be-

gins at 8000h.

NEW C
Erases current program in RAM; clears all variables.

NOT (expression) CR
Returns 1's complement (inverse) of expression.

NULL [integer] C
Sets the number (0-255) of NULL characters (ASCII 00) that BASIC-52 sends
automatically after a carriage return. Only very slow printers or terminals need
these extra nulls.

ON expression GOSUB line number [,line number] [,...,Iine number] R
Transfers program control to a subroutine beginning at one of the line numbersin
the list. The value of expression matches the position of the line number selected,
with thefirst l[ine number at position O.

Examples:

X=1
ON X GOSUB 100,200,400
Transfers program control to a subroutine at line 200 (position 1 in the list)

X=0
ON X GOSUB 800,300
Transfers program control to a subroutine at line 800 (position O in the list)

ON expression GOTO line number [,line number] [,...,line number] R
Transfers program control to one of the line numbersin alist of numbers. The

value of expression matches the position of the line number selected, with the

first line number at position O.

Example:

X=0

ON X GOTO 800,300
Transfers program control to line 800 (position O in the list)

The Microcontroller Idea Book 79

Chapter 5

ONERR line number R
Passes control to line number following an arithmetic error. Arithmetic errorsin-
clude ARITH. OVERFLOW, ARITH. UNDERFLOW, DIVIDE BY ZERO, and
BAD ARGUMENT.

ONEX1 line number R
On interrupt 1 (pin 13), BASIC-52 finishes executing the current statement, and
then passes control to an interrupt routine beginning at line number. The interrupt
routine must end with RETT.

ONTIME number of seconds, line number R
When TIME = number of seconds, BASIC-52 passes control to an interrupt rou-
tine beginning at line number. The interrupt routine must end with RETT .

CLOCK1 startsthe timer.

expression .OR. expression CR
Logical OR

P.

same as PRINT

PCON CR

Retrieves or assigns a value to the 8052’ s special function register PCON.

PGM CR
Programs an EPROM, EEPROM, or NV RAM with datafrom memory. Thefol-
lowing data must be stored in internal data memory in the locations listed:

1Bh,19h High byte, low byte of first address of datato program
1Ah,18h High byte, low byte of first address to be programmed - 1
1Fh,1Eh High byte, low byte indicating number of bytesto program
40h,41h High byte, low byte indicating width of programming pulse.

High byte = ((65536 - pulse width in seconds * XTAL/12) / 256.

Low byte = ((65536 - pulse width in seconds * XTAL/12) .AND. OFFh.
26h For Intelligent programming, set bit 3.

For 50-millisecond programming, clear bit 3.

PHO. CR
Sameas PRINT, but displaysvaluesin hexadecimal format. Uses two digitsto
display values less than OFFh.

PHO . # CR
Same as PRINT#, but displaysvaluesin PHO . hexadecimal format

80 The Microcontroller Idea Book

Programming

PHO.@
Same as PRINT@, but outputsvaluesin PHO . hexadecimal format.

PH1.
Sameas PRINT, but displaysvauesin hexadecimal format. Always displays
four digits.

PH1.#
Sameas PRINT#, but displaysvaluesin PH1 . hexadecimal format.

PH1.@
Sameas PRINT@, but outputsvaluesin PH1. hexadecimal format.

PI
Constant equal to 3.1415926.

POP variable[,...variable]
Assigns the value of the top of the argument stack to variable.

PORT1
Retrieves or assigns avalue to PORT1 (pins 1-8).

PRINT [expression] [,...expression] [,]

Displays the value of expression(s) on the host computer. A comma at the end of
the statement suppresses the CARRIAGE RETURN/LINEFEED. Values are separated
by two spaces. Additional PRINT optionsareCR, SPC, TAB, USING.

PRINT#
Sameas PRINT, but outputsto LPT (pin 8). BAUD and XTAL values affect the
PRINT# rate.

PRINT@

Sameas PRINT, but outputsto a user-defined output driver. Requires an assem-
bly-language output routine at 403Ch in external program memory. Setting bit 7
of internal data memory location 24h enables the output routine.

PROG
Stores the current RAM program in the EPROM space.

The Microcontroller Idea Book

CR

CR

CR

CR

CR

CR

CR

CR

CR

CR

81

Chapter 5

PROG1 C
Saves the serial-port baud rate. On power-up or reset, BASIC-52 boots without
having to receive a space character. The terminal’s baud rate must match the

stored value.

PROG2 C
Like PROG1, but on power-up or reset, BASIC-52 a so begins executing the first
program in the EPROM space.

PROG3 C
Like PROG1, but also saves MTOP. On power-up or reset, BASIC-52 clears
memory only to MTOP.

PROG4 C
Like PROG2, but also saves MTOP. On power-up or reset, BASIC-52 clears
memory only to MTOP.

PROG5 C
Like PROG3, but also reads 5Fh in external data memory on power-up or reset.

If 5Fh contains OA5h, BASIC-52 doesn’t clear external data memory. If data
memory location 5Eh contains 34h, BASIC-52 will automatically begin execut-

ing aprogram in external data memory.

PROG6 C
Like PROG5, but if externa data memory location contains 5Fh, BASIC-52 calls

a user-written assembly-language reset routine beginning at program memory
4039h.

PUSH expression [,...expression] CR
Places the values of expression(s) sequentially on BASIC-52's argument stack.

PWM expressionl, expression2, expression3 CR
Outputs a pulse-width modulated (PWM) sequence of pulses on pin 3. Expres-

sionl isthe width of each high pulse, expressed in clock cycles. Expression2 is

the width of each low pulse, expressed in clock cycles. Expression3 is the number

of PWM cycles output. One clock cycle = 12/XTAL. One PWM cycle = one high
pulse plus one low pulse. Expressionl and Expression2 must each be at least 25.
Maximum for each Expression is 65535.

RAM C
Selects the current program in the RAM space.

82 The Microcontroller Idea Book

Programming

RCAP2 CR
Retrieves or assigns a value to the 8052’ s special function registers RCAP2H and
RCAPZL.

READ variable[,...,variable] R
Retrieves the expressionsin a DATA statement and assigns each expression to a
variable.

REM CR
Introduces a comment, or remark. BASIC-52 ignores all text after REM in apro-
gram line.

RESTORE R
ResetsREAD pointer to the first expression in the DATA statement.

RETI R
Returns program control to the line number following the most recently executed
ONEX1 or ONTIME statement.

RETURN R
Returns program control to the line number following the most recently executed
GOSUB statement.

RND CR
Returns a pseudo-random number between 0 and 1 inclusive.

ROM [program number] C
Selects a program in the EPROM space (beginning at 8000h). Default program
number is 1.

RROM [program number] CR
Changes to ROM mode and runs the specified program. Default program number
isl.

RUN R
Executes the current program. Clears al variables.

SGN (expression) CR
Returns +1 if expression >=0, zero if expression = 0, and -1 if expression <O0.

SIN(expression) CR
Returns the sine of expression

The Microcontroller Idea Book 83

Chapter 5

SPC(expression)
PRINT option. Causes the display to place expression additional spaces (besides
the minimum two) between valuesin a PRINT statement.

Example:

PRINT “hello”,SPC(3), "good-by"
hello good-by

SQR(expression) CR
Returns sguare root of expression.

ST@ expression CR
Copies a 6-byte floating-point number from the argument stack to external data
memory. Expression points to the most significant byte of the number.

STOP
Halts program execution.

STRING expressions, expression2 CR
Allocates memory for strings (variables each consisting of a series of text charac-
ters).

Expressionl = (Expression2 * number of strings) + 1.

Expression2 = maximum number of bytes (characters) per string + 1. Executing
STRING clearsall variables. Maximum number of stringsis 255.

Examples:

STRING 91,9
reserves space for ten 8-character strings

STRING 9,4
reserves space for two 3-character strings

T2CON CR
Retrieves or assigns a value to the 8052’s special function register T2CON.

TAB(expression),

PRINT option. Specifies the position (number of spaces) to begin displaying the
next value in the PRINT statement.

Example:

PRINT TAB(5) “hello”
hello

84 The Microcontroller Idea Book

Programming

PRINT TAB(2) “hello”
hello

TAN(expression) CR
Returns the tangent of expression.

TCON CR
Retrieves or assigns a value to the 8052’ s special function register TCON .

TIME CR
Retrieves or assigns a value, in seconds, to BASIC-52's real-time clock.

TIMERO CR
Retrieves or assigns a value to the 8052’ S special function registers THO and TLO.

TIMER1 CR
Retrieves or assigns a value to the 8052’s special function registers TH1 and TL 1.

TIMER2 CR
Retrieves or assigns a value to the 8052’s special function registers TH2 and TL2.

TMOD CR
Retrieves or assigns a value to the 8052’s special function register TMOD.

U.
PRINT option. Same as USING.

UIO CR
Restores BASIC-52's console input driver after using UT 1.

UIl CR
Allows a user-provided assembly-language console (host computer) input routine

to replace BASIC-52's console input driver. External program memory location

4033h must contain ajump to the user’s routine.

Uoo CR
Restores BASIC-52's console output driver after using UT1 .

vol CR
Allows a user-provided assembly-language console (host computer) output rou-

tine to replace BASIC-52’s console output driver. External program memory loca-

tion 4030h must contain a jump to the user’s routine.

The Microcontroller Idea Book 85

Chapter 5

USING (FN)

PRINT option. Causes BASIC-52 to output numbers in exponential format with
N significant digits. BASIC-52 always outputs at least 3 significant digits. Maxi-
mum expression is 8.

Example:

PRINT USING(F3),3,4.1,100
3.00 E O
4.10 E O
1.00 E 2

USING(0)

PRINT option. Causes BASIC-52 to output numbers from £.99999999 to +0.1 as
decimal fractions. Numbers outside this range display in USING (FN) format.
USING (0) isthe default format.

USING (H..#[.J#..#])

PRINT option. Causes BASIC-52 to output numbers using decimal fractions,
with # representing the number of significant digits before and after the decimal
point. Up to eight # characters are allowed.

Example:
PRINT USING (###.##),3,4.1,100
3.00
4.10
00.00

XBY(expression) CR
Retrieves or assigns a value in external data memory.

XFER C
Copies the current program from the EPROM space (beginning at 8010h for pro-
gram 1) to RAM (beginning at 200h), and selects RAM mode.

expression .XOR. expression CR
Logical exclusive OR

XTAL CR

Assigns avaue equal to the system’s crystal frequency, for use by BASIC-52 in
timing calculations.

86 The Microcontroller Idea Book

Inputs and Outputs

6

Inputs and Outputs

So far, our BASIC-52 circuit consists of the 8052-BASIC microcontroller, RAM, nonvola
tile memory for permanent program storage, and a serial interface to a host computer. Now
it's time to add inputs and output interfaces that enable the system to monitor and control
devices outside of these circuits. The options include low-cost buffers and latches, as well
as programmable chips with features like individual bit control, automatic generation of
control signals, and the ability to configure a port as input, output, or bidirectional.

The Memory Map

But before we start adding components, it’s time to draw a memory map for the system.
The memory map is adiagram that shows the range of addresses amicrocontroller or other
computer can access, along with each component that the computer reads or writes to and
the addresses where each component resides. The components may be memory chips like
RAM or EPROM, or they may be other componentsthat the computer accessesby specifying
an address. Drawing a memory map helps to ensure that each component has a unique
address or range of addresses.

Figure 6-1 shows the memory map for our design. Each 64K area of external memory

consists of eight 8K blocks. Remember that 8 kilobytes equals 8192 in decimal, but 2000
in hexadecimal.

The Microcontroller Idea Book 87

Chapter 6

Internal code memory consists of the 8052-BASIC’s ROM, which uses the addresses from
0 to 1FFFh.

External datamemory beginning at Oisalso required. BASIC-52 reservesthefirst 512 bytes
for its own use, and it stores the current BASIC-52 user program immediately above this
area. The memory map allows a choice of using an 8K RAM from 0 to 1FFFh, or a 32K
RAM, which uses the entire areafrom 0 to 7FFFh. (The 8052 also has 256 bytes of internal
data memory, which the memory map doesn’t show.)

Two 8K blocks of combined code/data memory are reserved beginning at 8000h. As Chapter
4 showed, BASIC-52's programming commands store programs in nonvolatile memory
beginning at this location.

For theinput and output, or /O, circuits described in this chapter, the memory map reserves
the top block of data memory, from EO0Oh to FFFFh. 1/O interfaces include connections to
buffers, latches, switches, displays, motors, or just about anything besidesthe system’smain
memory. The 1/O circuits don’t have to use this block, but BASIC-52 encourages it, since
it clears externa memory only up to EOOOh on bootup (unless you specify alower value by
saving MTOPwith a PROG3 command.)

EXTERNAL MEMORY

FFEFH o FFFFH
UNASSIGNED
conon EXPANSTON | 0
DATA | I'DFFFH DEFFH CODE
UNASSIGNED T UNASSIGNED
COOOH COQOH
BFFFH NONVOLATILE
MEMORY
COMBINED | |A@@QH (OPTIONAL)
CoDE/DATA | [9FFFH SV ——
8000H MEMORY
7FEFEH A 7FFFEH
ortionaly | T unassioneD
6000H 6QQ0H
SFEFH A SEFFH
(OPTIONAL) UNASSIGNED | |CODE
4000H 4QQ0H
3FFFH RAM 3F$FH
UNASSIGNED
I P INTERNAL MEMORY
IFEFH TFEFH
DATA T RAM ROM CODE
0000H o000 BASIC-52)

Figure 6-1. Memory map for the 8052-BASIC system’s internal and external
data and program memory.

88 The Microcontroller Idea Book

Inputs and Outputs

Unassigned space remains in the memory map, but there's nothing wrong with this since it
leavesroom for additions. Also, thisisn’t the only way to configure an 8052-BASI C system.
For example, if you use asingle 8K EPROM at 8000h, you can use the areafrom A0OOh to
BFFFh for additional 1/0.

Not shown are two areas that BASIC-52 reserves for optiona enhancements. If you
customize BASIC-52 by adding your own instructions, commands, or reset routines,
BASIC-52 expectstofind parametersrel ating to thesein code memory from 2001h to 2090h.
And, if you want to call assembly-language interrupt routines, BASIC-52 expects to find
vectors for these in code memory from 4003h to 41FFh. For these, you can use EPROM,
EEPROM, or NV RAM, as Chapter 13 shows.

Uses for I/0 Ports

Just about all microcontroller circuits need to be able to do more than just read and write to
memory. Other uses involve sensing and controlling of conditions, events, or devices
external to the basic circuits. For example, a microcontroller-based drilling machine for
printed-circuit boards might have these responsibilities:

Detect when a user presses a switch.

Move the pc board so that the hole to be drilled lies under the drill bit.
Set the speed of rotation for the drill bit.

Lower the bit into the board, then raise it after drilling.

Detect problems, such as a bit that doesn’t lower or a drilling obstruction.
Display messages to prompt the user for input or show progress.

These functions all involve reading and writing, but instead of reading and writing to
memory, the microcontroller reads sensors and switches, and writes to motors and displays.
Reading and writing to devices other than memory is often called input/output, or 1/0O for
short.

Adding Ports

The 8052-BASIC has a few pins on Port 1 that you can use for I/O. Chapter 3 included
programs for reading and writing to these. But many projects will require more 1/0O than
these few pins can offer.

Figure 6-2 shows acircuit that allows you to add up to eight 8-bit ports to the main circuit.
You can design the ports as inputs or outputs, in any combination.

The Microcontroller Idea Book 89

Chapter 6

DATA BUS (D@-D7)

HIGH ADDRESS BUS
(A8-AL5)

EQQOH

ull
74HCT 138

—G28B

POWER AND GROUND PINS
1c +5Y | GND
u9 14 7

utl 16 8
ui2 20 10
u1s 14 7
ul4 20 10

ADDRESS DECODER

+5V

/| FH
SO
é;&
m
QO

ui2
7415244
bo 1Yl a1 P2 BIT
DI Y2
D2 Y3 a2 BIT
D3 12
52 o1 Lv4 6
2v1 1A3 BIT
D5 7
D6 51272 8
o $12v3 1A4 BIT
2Y4 i’
2A1 BIT
2n2 3 BIT
IS a3 2 BIT
% 2na L BIT
INPUT BUFFER
ul4
7415374
ww M 1D 1a MW\\\\\W BIT
D2 720 5
03 5130 20 B——> BIT
D4 520 6
o5 5150 30 > BIT
D6 7]%P 9
o7 s MW 40 ——> BIT
50 umw\\\\v BIT
60 H>—> It
70 umw\\\\v BIT
_ g0 H2 > gt

ocC

OUTPUT LATCH

Figure 6.2 Circuits for adding inputs and outputs to the 8052-BASIC system.

8 TTL-
COMPATIBLE
[NPUTS

8 TTL-
COMPATIBLE
OUTPUTS

The Microcontroller Idea Book

90

Inputs and Outputs

Ull isa 74HCT138 3-to-8-line decoder that generates individual chip-enable signals for
eight 1K blocks in the memory area from EOOOh to FFFFh. 1t works the same way that U6
generates chip selects for 8K blocks in the main circuit.

U11 is enabled whenever pin 7 of U6 islow, which occurs when the 8052-BA S| C reads or
writes to addresses from EO0Oh to FFFFh.

Address lines A10, A11, and A12 determine which of U11's outputs goes low when the chip
isenabled. Aswith U6, each output islow for adifferent memory area. For example, pin 15
islow only when addresses from EOOOh to E3FFh are being read or written to.

One possible point of confusion is that both pin 7 of U6 (in Figure 3-1) and pin 15 of U11
arechip-selectswith astarting address of EOOOh. One controlsmemory accessesintheentire
8K block from EQ0Oh to FFFFh, while the other controls only the 1K block from EOQOOh to
E3FFh. To distinguish the two, I’ ve labeled U11's pin 15 as EO00H-1K.

U12 and U14 are examples of input and output ports that U11 can enable.
An Input Port

U12 isa 74LS244 octa buffer that adds eight inputs to the circuit. The buffer’'s Y outputs
connect to the system’s data bus (D0-D7). The chip hastwo groups of four buffers, with each
having its own enable input (1G and 2G). For this application, the enables are tied together,
and all eight buffers are accessed as a group.

| used an LSTTL devicefor the buffer rather than a CMOS 74HC244 for acouple of reasons.
The LSTTL chip has Schmitt-trigger inputs, which are less sensitive to noise. Plus, unlike
CMOS, the LSTTL buffer requires no pull-up resistors at unused inputs.

OR gate U9B ensures that U12 is enabled only when U2 (the 8052-BASIC chip) reads an
address from EOOOh to E3FFh. When this occurs, output-enable pins 1 and 19 go low, the
buffer’s outputs follow its inputs, and U2 reads the data that U12 has placed on D0O-D7.

After aread operation, pins1 and 19 go high and U12’s outputs are high-impedance. In other
words, the outputs are electrically similar to an open circuit, which ensures that they won't
interfere with other operations on the data bus.

In the circuit, U12 isread-only. Write operations to EO0Oh have no effect. To access U12 at
adifferent address, wire pin 4 of U9B to a different output of U11.

Memory decoding options. Note that although U12 holds just one byte of information to
read, you can access it at any address from EOOOh to E3FFh. This may seem like awaste of

The Microcontroller Idea Book 91

Chapter 6

1023 (3FEh) addresses. Indeed, if using every byte of memory iscritical, you can use other
methods in place of U11 to more completely decode, or divide, the memory space.

Programmable logic is one possibility, for those who have access to a logic compiler and
device programmer. But for many circuits, complete decoding of memory isn’t necessary,
and less-than-compl ete decoding using off-the-shelf partsis more practical.

An Output Port

To complement U12’sinput byte, U14 provides eight bits of output. U14 isa74L S374 octal
flip-flop, whichisvery similar tothe 74HCT373 octal latch at U4. Onthe’ 373, 1Q-8Qfollow
1D-8D until pin 11 goes high, after which 1D-8D no longer change. In contrast, on the ' 374,
1Q-8Q change only on pin 11'srising edge, when 1D-8D are latched to 1Q-8Q.

Hereagain, | chose LSTTL over CMOS, thistime becausethe LSTTL devicecan sink 12ma
at 0.25V, comparedto 6maat 0.2V for the 74HC374. However, the 74HC374 can a so source
6maat 4.2V, so it's a better choiceif you need to draw current from alogic-high output.

U14'seight datainputs connect to the data bus (D0-D7). Its output control (pin 1) istied low
so that the outputs are always enabled. If you want to be able to disable the outputs, you can
instead tie pin 1 to an unused bit on Port 1.

NOR gate U13A clocksU14 only when U2 writesto addresses from E400h to E7FFh. When
thisoccurs, the datawritten islatched to the outputs of U14. The outputs do not change until
the next time the chip is written to.

In the circuit, U14 is write-only. Reading address E400h will return the value OFFh. To
access U14 at adifferent address, wire pin 2 of U13A to a different output of U11.

Since U12 isread-only and U14 is write-only, you could use the same address for both, by
having them share the same output of U11. For example, if you wire both pin 2 of U13A
and pin 4 of U9B to pin 7 of U11, both will be accessed at FCOOh. Write operations will
access U12, and reads will access U14. In this way, you can add up to eight input ports and
eight output ports, with eight chip-select addressesin all.

Wiring Tips

Add Figure 6-2's circuits to Chapter 3's circuits, including the connections shown to DO-D7,
A10-A12, E000h, READ, and WRITE inthe main circuit. The schematic continuesthe component
numbering sequencefromtheearlier schematics. Usesocketsfor thelCs. WireU13'sunused
inputs(pins5, 6, 8, 9, 11, and 12) toGND or +5V. Also add acoupleof 0.1-microfarad ceramic
decoupling capacitors from +5v to GND, near the added ICs.

92 The Microcontroller Idea Book

Inputs and Outputs

If you wish, you can wire U14’s inputs and U12's outputs to headers for easy access when
you want to connect clip-on jumpers, probeleads, or ribbon cablesto the inputs and outputs.

Basic Tests

What can you do with these new inputs and outputs? First, some simpletests. You read and
writetothe portsexactly asyouread and writeto external memory. ThisBASIC-52 statement
will display the value of the byte at U12’'s inputs:

PRINT XBY (0OE000h)

Or, you may prefer a hexadecimal display:

PHO. XBY (0OE0O0Oh)

To verify that you'rereading all bits correctly, jumper each input in turn to ground and +5V
and read the results. Open inputs are undefined and may read as high or low.

To test Ul4’s outputs, use this BASIC-52 statement:

XBY (0E400h) =xX

where xx is the value you want to write to the chip. To set al bits, write 255 or OFFh. To
clear them, write 0. To verify that all bits are responding, connect a logic probe, voltmeter,
or oscilloscopeto each of the outputs of U14 inturn and verify that the bits respond correctly
to your commands.

Input Examples

Figure 6-3 shows some inputs that you can interface to U12.

(A) TTL or CMOS logic outputs powered at 5 volts can directly drive U12'sinputs.

(B) Totranslate lower voltagesto 5-volt logic, usea74HCTO3 or similar open-drain NAND
gate with a pullup resistor to 5 vaolts.

(C) To trandate higher voltages to 5-volt logic, use a 74HCA4050 buffer or 74HC4049
inverter, powered at 5 volts. These chips can safely accept inputs up to 15 volts.

(D) You can also detect the state (open or closed) of atoggle or dide switch at aport pin.

(E) Anoptocoupler isanother way to interface different voltagelevels, andit also electrically
isolates the input from the microcontroller circuit.

The Microcontroller Idea Book 93

Chapter 6

(A) +5V LOGIC
(B) +3V LOGIC
(C) +15V LOGIC
(D) TOGGLE OR

SLIDE SWITCH

(E) OPTOISOLATED

+5V TO +15V +5V

ANY A
[NPUT
e “L s aca0se

OV -OFF
12V=0N

FSy ANY TTL 7418244

OR CMOS ANY A
OUTPUT INPUT

#2V TO +5v 5V

IOK ANY A

[NPUT
—4 .

74HCTO3
— (OPEN-DRAIN OQUTPUT)

+5V

loK ANY A
INPUT

OPEN
CLOSED

+5V

TOK ANY A

f 1K [NPUT

1 16 5 H=0FF

L_ L =0ON

v
NS N
2 4N35

p)

Figure 6-3. Input interfaces for the 74LS244 buffer.

94

The Microcontroller Idea Book

Inputs and Outputs

(A) +5V TTL LOGIC
(B) +5V CMOS LOGIC
(C) +3V LOGIC

(D) +15V LOGIC

(E) HIGH CURRENT
(F) LED

(G) OPTOISOLATED

74L5374

ANY TTL
+5Y
ANY Q OR HCTMOS
OUTPUT INPUT %
+5V -
Q@
§1®K oy
N
ANY Q ANY CMOS
OUTPUT J INPUT
+2 TO +5V
Q
ANY Q ANY HCMOS
OUTPUT INPUT
74HC4050 L1
+5 TO +15V
Q
oAl ANY
ANY Q 10KS 4000-SERIES
OUTPUT CMOS INPUT
74L526 _—
(OPEN- — -
COLLECTOR
OUTPUT)
+5 TO +30V
O
+5V
LOAD
o |LOAD)
OUTPUT
75452 UP TO
PERIPHERAL -— 300QmA
DRIVER -
ANY Q 22%5V
OUTPUT -] ? 12y
L =ON
H=0FF d 1@mA
+5Y LOAD
)
L 16 5
~7 L,
W
ANY Q 5 7
OUTPUT 330 NS ?g
L =ON
H=OFF

Figure 6-4. Outputinterfaces to the 73LS374 octal latch.

The Microcontroller Idea Book

95

Chapter 6

Output Examples
Figure 6-4 shows some basic outputs that you can connect to U14:
(A) Outputs can directly drive any TTL or HCTMOS logic input powered at 5 volts.

(B) To interface to 5-volt HCMOS or 4000-series CMOS devices, add a pull-up resistor to
ensure that high outputs are greater than 3.5 volts.

(C) To trandlate an output to alower voltage, use a 74HCA4050 buffer or 74HCA4049 inverter
powered at the lower voltage.

(D) To trandate an output to ahigher voltage, use a74L S26 NAND or similar high-voltage,
open-collector gate, with a pullup resistor to the higher voltage.

(E) For high-current outputs, you can use Texas Instruments 7545X series of peripheral
drivers. The 75452 NAND gate can sink up to 300 milliamperesat 0.5V.

(F) U14 can directly drive an LED. Since the 74L S374 can sink more current than it can
source, connect the LED so that it turns on when the output is low. With a 220-ohm
current-limiting resistor, the LED’s forward current is around 13 milliamperes.

(G) As with inputs, an optocoupler is another way to interface different voltages, and to
electrically isolate an output from the microcontroller circuit.

Reading and Controlling Individual Bits
Unlike assembly language for the 8052, BASIC-52 has no logical operators for setting and

clearing individual bits in a byte. But you can use the .AND. and .OR. operators to
accomplish the same thing.

Listing 6-1. Displays the value of each bit at input port EO0Oh.

10 A=XBY (0OEOOQOOQOH)

20 PRINT “Bit 0 = ”, (A.AND.1)

30 PRINT “Bit 1 ", (A.AND.2) /2

40 PRINT “Bit 2 ”,(A.AND.4) /4

50 PRINT “Bit 3 ", (A.AND.8) /8

60 PRINT “Bit 4 ”,(A.AND.10H) /10H
70 PRINT “Bit 5 ”, (A.AND.20H) /20H
80 PRINT “Bit 6 ”, (A.AND.40H) /40H
90 PRINT “Bit 7 = ”, (A.AND.80H)/80H

100 END

96 The Microcontroller Idea Book

Inputs and Outputs

Listing 6-2. Sets or clears a bit at output port E400h.

5 REM variable A contains the last data written to 0E400h
10 INPUT “Enter a bit to set or clear (0-7) :7,X
20 INPUT “Enter 1 to set, 0 to clear :”,Y

30 IF Y=1 THEN A=A.OR.2**X

40 IF Y=0 THEN A=A.AND.QOFFH-2**X
50 XBY (0E400H) =A

60 END

Listing 6-1 isaprogram that reads the buffer and displaysthe value of each bit. The program
issimilar to Listing 3-1, which displays the bit values at Port 1.

Line 20 finds the logic state of bit O by logically ANDing the byte with a mask byte that is
all O'sexcept for bit 0: 00000001. Theresultis1if bit 0is1, and Oif bit 0isO. Lines 30-90
are similar, except that each time a different bit in the mask byte is 1. In each case, the
program dividesthe result by 2 raised to the power of the bit number. Since (2**0 equals 1,
line 20 leaves out this step.) Each PRINT statement shows the logic state of one of the bits.

At the output port, if you want to change just one bit in the byte, you have to know the
current value of the byte. The simplest way to accomplish thisisto save the last value you
wrote. Or, you could wire aninput buffer at the same address, with each input bit connecting
to the corresponding output bit, and read the input when you need to know the current value.

Listing 6-2 promptsyou for abit to set and clear, then does so. It assumesthat you' ve stored
the current value of E400h in variable A.

To set abit, line 30 logically ORsthe current value with amask byte that isall Os except for
the bit to be set. For example, to set bit 4, the mask byte is 0001 0000, or 10h, which leaves
bits 0-3 and 5-7 unchanged, but forces bit 4 to be 1.

To clear abit, line 40 logically ANDs the byte with amask byte that is all 1s except for the
bit or bitsto be cleared. For example, to clear bit 3, the mask byteis 1111 0111, or F7h. The
result is that bits 0-2 and 4-7 are unchanged, but bit 3 must be 0.

Line 50 writes the new byte to the port.

The Microcontroller Idea Book 97

Chapter 6

Table 6-1. Popular peripheral interface chips.

8253/4Programmable Interval Timer
Three independent 16-bit counters, 6 modes, up to 10 Mhz

8255 Programmable Peripheral I nterface
Three 8-hit I/O pins, 3 modes, direct bit set/reset ability

8256 M ultifunction Microprocessor Support Controller
Asynchronous serial interface, baud rate generator, five 8-bit timer/counters, two 8-bit
1/O ports, 8-level interrupt controller, programmable system clock

8259 Programmable Interrupt Controller
Eight-level priority controller, programmable interrupt modes

8279 Programmable Keyboar d/Display | nterface
Scanned interfaces to 64-contact key matrix and 16-character display.

The 8255 Programmable Peripheral Interface

In addition to the inputs and outputs provided by U12 and U14, there are specialized
peripheral-interface chipsthat you can add to your system. Table 6-1 lists several examples.

One of the most popular of these is the 8255 programmable peripheral interface, or PPI.
Figure 6-5 shows the pinout, and Table 6-2 shows the pin functions. The chip adds 24 bits
of 1/0, plus the option to use special control and handshaking signals to communicate with
peripherals.

Intel originally introduced the 8255 asa peripheral for its8085 microprocessor, but it remains
a popular chip for use with 8052s and other computer chips. Manufacturers of compatible
chipsinclude AMD, OKI, Toshiba, and NEC, which callsits chip the uPD71055.

If you usethe 8255, you’ Il want acopy of itsdatasheet, whichmorefully explainsitsabilities
and configuration options.

8255 Variants

You have a choice of the original NMOS 8255 or the CMOS 82C55. The CMOS version
usually costs alittle more, but has some advantages. First, it haslower power consumption,
with supply currentsof 10 milliamperes (10 microamperesin standby mode with CS=high),
compared to 120 milliamperes for the 8255.

98 The Microcontroller Idea Book

Inputs and Outputs

The 82C55 also has CM OS-compatible outputs, which means that they can drive either
LSTTL or CMOS inputs. When driving CMOS inputs, the NMOS 8255's outputs should
have pull-up resistors to ensure that high outputs are at least 3.5 volts.

A third advantage to the 82C55 is greater current-sourcing ability, which can be important
if you want to directly drive a transistor or source more than a fraction of a milliampere.
Intel’s 82C55 can source 2.5 milliamperes at 3 volts, compared to just 0.4 milliamperes at
2.4 voltsfor the 8255. However, NEC's CMOS 71055 has the same current-sourcing ability
asthe NMOS 8255, so it depends on the manufacturer. All can sink 2.5 milliamperesat 0.45
volts. The 74L S374 latch (U14) has greater output drive ability than any of the 8255s.

Speed Ratings

The 8255 is also available with different speed ratings, including 3 Mhz and 5 Mhz. The
5-Mhz part is sometimes called the 8255-5. From the ratings, it may seem that the 8255 is
too slow to interface to a 12-Mhz 8052-BASIC. But what does the speed rating actually
refer to? Since the 8255 was developed for the 8085, | suspect that it refers to the maximum

82(C)55
paz]l ~ sofprasa
PA2 O] 2 39 PAs
Pal O3 38|01 PAG
PA0] 4 37 PA7
RDO5 I6[OWR
csde 35[0RESET
oND O 7 341D
Al s 33D
ao o 32pD2
rc7d 10 31[D3
Pco] 11 30| D4
pcs 12 20[DS
pcar] 13 28 1D6
pcor] 14 27 D7
rci] 15 26| vee
rc2d 16 251 PR7
pc3d] 17 241 PB6
Peo] 18 23 PBS
PRI O] 19 22| PB4
PB2] 20 21 PB3

Figure 6-5. Pinout of the 8255 Programmable Peripheral Interface.

The Microcontroller Idea Book 99

Chapter 6

Table 6-2. Pin functions for the 8255 Programmable Peripheral Interface.

Pin Symbol Input/ Function
Output

1 PA3 I/O Port A, bit 3
2 PA2 /0 Port A, bit 2
3 PA1 I/O Port A, bit 1
4 PAO I/O Port A, bit 0
5 RD | Read
6 [I Chip select
7 GND I Signal ground
8 Al I Port select 1
9 A0 I Port select 0
10 PC7 I/O Port C, bit 7

OBFA (0] Port A output buffer full
11 PC6 110 Port C, bit 6

ACKA I Port A acknowledge
12 PC5 I/0 Port C, bit 5

IBFA (0] Port A input buffer full
13 PC4 I/O Port C, bit 4

STBA I Port A strobe
14 PCO /0 Port C, bit 0

INTRB (0] Port B interrupt request
15 PC1 I/O Port C, bit 1

IBFB (0] Port B input buffer full

OBFB (0] Port B output buffer full
16 PC2 I/O Port C, bit 2

STBB I Port B strobe

ACKB I Port B acknowledge
17 PC3 /0 Port C, bit 3

INTRA (0] Port Ainterrupt request
18 PBO I/O Port B, bit 0
19 PB1 I/O Port B, bit 1
20 PB2 /0 Port B, bit 2

100 The Microcontroller Idea Book

Inputs and Outputs

Pin Symbol Input/ Function
Output
21 PB3 I/O Port B, bit 3
22 PB4 I/O Port B, bit 4
23 PB5 I/O Port B, bit 5
24 PB6 I/O Port B, bit 6
25 PB7 I/O Port B, bit 7
26 Vce I Power supply (+5V)
27 D7 I/O Data bit 7
28 D6 1’0 Data bit 6
29 D5 1’0 Data bit 5
30 D4 I/O Data bit 4
31 D3 I} Data bit 3
32 D2 I/O Data bit 2
33 D1 I} Data bit 1
34 DO 1’0 Data bit O
35 RESET I Reset ports to input; clear control register
36 WR I Write
37 PA7 I/O Port A, bit 7
38 PA6 110 Port A, bit 6
39 PA5 I/O Port A, bit5
40 PA4 I/O Port A, bit 4

The Microcontroller Idea Book 101

Chapter 6

uis
82(C)55
RESETs—gRESET PA.@;‘— —
-READ3—6W3 PA.IQ—
-WRITE—6_R PA. 25—
FCQOH —CS PA. 31 SORT A
PA . 41—
39
PA.SW
LOW ADDRESS BUS PA.6 5>
(AQ-A7) PA.7 2
P oS
PB. 1 2
A0 EAPYA pp. 222
Al 81 a1 pg. 32
2122 PORT B
PB. 4=
23
PB.5 =
24
DATA BUS (D@-D7) PB.6 ==
pR.7 = —
N\
—g? ;2 DO INTRB/PC.@—}g —
350! [BFB/—OBFB/PC.I—]6 PORT C
o5 31192 STBB/ACKB/PC.2 = LOWER
o 3a1 03 INTRA/PC. 3% —
e S_TBA/PC.4—]2 —
5 5505 [BFA/PC.S5 - PORT C
o506 A—CKA/PC.6—]® UPPER
— 2" {p7 0BFA/PC.7 }— —
PERIPHERAL [NTERFACE
POWER AND GROUND PINS *5YV
IC +5YV GND i cl18
T o.1uF
uis 26 7 =

Figure 6-6. Connections for adding an 8255 Programmable Peripheral
Interface.

crystal frequency of an 8085 interfaced to the 8255. Because the signal timings for an 8052
are very different, these ratings don’'t apply and you haveto look at the timing diagramsto
determine what will work. For use with the 8052-BASIC, use a5-Mhz or faster 8255 if your
crystal is 12 Mhz. Slower crystals can use the 3-Mhz or 5-Mhz versions.

102 The Microcontroller Idea Book

Inputs and Outputs

An 8255 Interface

Figure 6-6 shows an 8255 (U15) accessed at FCOOh in the 8052-BASIC system. Many of
the pins connect directly to matching signalsin the system: D0-D7 connect to the system’s
databus, A0 and A1 connect to thelowest two addresslines, and theRD and WR i nputs connect
to U2's matching outputs. CS connects to pin 7 of U11 (from Figure 6-2), which selects the
chip at addresses from FCOOh to FFFFh. U15 actually usesfour of these addresses: FCOOh
through FCO3h.

U15' sRESET input is controlled by the same RESET signal at pin 9 of the 8052-BASIC. The
three new 1/O ports are Port A, Port B, and Port C. Address lines A0 and A1 select the port
to be accessed, with Port A at FCOOh, Port B at FCO1h, and Port C at FC0O2h.

The port pins should connect only to voltages in the range -0.5V to +6.5V. According to
Intel’s data sheet, the 82C55 has bus-hold circuits that eliminate the need for external
pull-ups on its CMOS inputs.

The Control Word

You configure the 8255 by writing a control word to acontrol register addressed at FCO3h.
The control word has two functions: selecting modes of operation, and setting and clearing
port bits. When bit 7 of a byte written to the control register is 1, the control word selects
modes of operation for each port and determines whether a port is input, output, or
bidirectional. Many combinations of modes and /O are available. When bit 7 of a byte
written to the control register is0, the control word sets and clearsindividual bits of Port C.
The control word iswrite-only; you can’t read it.

Mode Setting

Figure 6-7, from Intel’s data sheet, describes the mode-set control word. The ports are
divided into two groups. Group A consists of Port A plus bits 4-7 of Port C, and Group B
consists of Port B plus bits 0-3 of Port C. This grouping enables Ports A and B to each use
half of Port C for handshaking, or control, signals.

To set the mode, bit 7 of the control word must be 1. Bit 2 selects mode O or 1 for Group B,
and bits 5 and 6 select mode 0, 1, or 2 for Group A. Bits0, 1, 3, and 4 select whether a port
isinput or output, with each half of Port C selected independently.

The simplest mode is Mode 0O, Basic Input/Output. The ports behave very much like the
inputs and outputs at U12 and U14. Outputs are latched, so they change only when written
to. The inputs are not latched, so the present, or current, value of theinput is always read.

This statement configures al ports as inputs in mode O:

The Microcontroller Idea Book 103

Chapter 6

CONTROL WORD

D/

D6|D5| D4 | D3| D2

DI

DO

GROUP B

PORT C (LOWER)

I = INPUT
© = OUTPUT
PORT B

I = INPUT
© = OUTPUT

MODE SELECT

© = MODE 0
I = MODE 1
GROUP A

PORT C (UPPER)

I = INPUT
© = OUTPUT
PORT A

I = INPUT
© = OUTPUT

MODE SELECT

0o = MODE ©
©l = MODE |
[X = MODE 2
MODE SET

I = ACTIVE

Figure 6-7. With bit 7 set, writing to the 8255’s control word selects the

modes of operation for each port.

104

The Microcontroller Idea Book

Inputs and Outputs

XBY (OFC03h) =9BH

On reset, the 8255 uses this mode, until you tell it differently.
Toread Port A, use

PRINT XBY (0OFCOOH)

or

PHO. XBY (OFCOOH)

To read Port B or C, use the same statement, but with 0OFC01H or 0FC02H to select the
port you desire.

To configure al al bits as outputs in mode O, use this statement:

XBY (OFC03h) =80H

Then, to write avalueto Port A, use

XBY (0FCO0h) =xx

where xx is the value to be written.

Use FCO1h to write to Port B, and FC02h for Port C.

Combinations of Inputs and Outputs

Fourteen other combinations of inputs and outputs are possible by setting or clearing bits 0,
1, 3, and4inthecontrol word asshownin Figure 6-7. To changethe mode settings, determine
which bits to set and clear for the configuration you want, convert the value to decimal or
hexadecimal, and write the value to OFCO3h.

One handy feature of the 8255 is that you can read back the last value written to an output
port. With the ports configured as outputs, you can use the same statements you use to read
the input ports. At Port B or C, reading an output port gives the value in the output latch,
which contains the last value you wrote to the port. Port A works alittle differently. Instead
of reading the output latch, you read the actual logic states on Port A’s pins. This meansthat

at Port A, if abit is shorted to ground, you will read back a O for that bit, even if the last
valuewritten to it was a 1.

The Microcontroller Idea Book 105

Chapter 6

CONTROL WORD

D3| D2| Dl | Do

D7

| XX X
DON"T BIT SET/RESET
CARE I = SET
© = RESET
BIT SELECT

O0|112]|314|5(6]|7

o|1|o|l|ofl]|o]|!
olo|l|l]jo|o|1]!1
olo|o|O|1|1|1]]1

BIT SET/RESET
© = ACTIVE

Figure 6-8. With bit 7=0, writing to the 8255'’s control register will set or clear
individual bits in Port C.

Bit Control

Another useful feature of the 8255 is the ability to set and clear individual bits on Port C.
You do so again by writing to the control register, as Figure 6-8 shows. Bit 7 must be 0. Bit
0 selects set or reset (clear) for the bit, and bits 1-3 select the bit to set or clear. For example,
this BASIC-52 statement sets bit 7 of Port C:

XBY (OFC03h) =0Fh

To clear hit 7, use this statement:

XBY (0FCO03h) =0Eh

106 The Microcontroller Idea Book

Inputs and Outputs

To set or clear adifferent bit, determine which bits to set and clear for the result you want,
convert the value to decimal or hexadecimal, and write the value to OFCO3h.

Adding Handshaking

For many applications, Mode O isall you need. Modes 1 and 2 add handshaking, or control,
signals for components that require them.

Mode 1 is Srobed Input/Output. It uses Port C for handshaking signals that let the
8052-BASIC and theperipheral tell each other whether or not they’ reready to send or receive
data, and to confirm that data has been received. Mode 1 also latches the input data, so you
can use an external signal to latch datainto U15, and saveit until the 8052-BASIC hastime
toread it. In Mode 1, you can configure Ports A and B to be inputs, outputs, or one of each.

Each port has its own set of handshaking signals on Port C, as described in Table 6-2.

I nput Control. For input ports, these are the added signals:

STB (strobeinput) causesdatato load intothe 8255'sinput latch. InMode 1, the8052-BASIC
can't read the data at U15’s ports until STB’s rising edge latches the datain. You can use an
output of aclock or counter chip to latch datainto U15 at timed intervals, or latch datawhen
auser presses akey.

IBF (input buffer full output) goes high to indicate that the 8255 has loaded datain response
to STB. When the 8052-BASIC reads the data, the rising edge of RD bringsIBF low again.
You can use IBF to clear or reset the device that generated STB.

INTE (interrupt enable) isan internal signal that you must set to enable INTR, described next.
For Group A, you set INTE by writing 1 to Port C, bit 4. For Group B, write 1 to Port C, bit
2. The BASIC-52 statement to set INTE for Port A isthis:

XBY (0F03h) =9

For Port B, it's this:

XBY (OF03h) =5

Writing to these locations sets interna bits in U12. However, these write operations have
no effect on the STB inputs, which share the same bit addresses at Port C.

INTR (interrupt request output) goes high when INTE is set and both'STB and IBF are high,

to signal that the 8255 has data waiting to be read. INTR can connect to an interrupt input on
the 8052-BASIC (pin 13, for example), to cause it to jump to an interrupt routine that reads

The Microcontroller Idea Book 107

Chapter 6

the newly latched data. The falling edge of RD brings INTR low again as the CPU reads the
data.

Output Control. For output portsin Mode 1, there is a complementary set of signals:

OBF (output buffer full output) goes low to indicate that the CPU has written data to U12.
OBF can signal a peripheral device (adisplay, for example) that it’'stimeto read data that the
8255 isholding for it.

ACK (acknowledge input) strobeslow to tell the 8255 that the periphera device hasread the
data. ACK’s falling edge brings OBF high.

INTE (interrupt enable) is set to enable INTR. Itsfunction issimilar to its function for Mode
1'sinputs, except that Group A uses bit 6 of Port C, and Group B uses bit 2 of Port C.

INTR (interrupt request output) goes high to signal that a periphera has accepted the data
written to U12. The falling edge of WR brings INTR low, and INTR goes high again when
ACK and OBF are both high and INTE is set, to signa that the periphera has read and
acknowledged the data.

For both inputs and outputs, connecting INTR is optional.

Mode 1 leaves two bits of Port C unused. If Port A isinput, the unused bitsare 6 and 7. If
Port A isoutput, the bitsare4 and 5. You can use these as general -purpose inputs or outputs.
Bit 3 of the mode-select control word selects an input or output function for both bits.

Mode 2 (Strobed Bidirectional Bus1/O) issimilar to Mode 1, except that data can flow both
ways. Mode 2 can use all of the control signals used by Mode 1’'s input and output modes,
and is available only for Port A. With Port A in Mode 2, Port B can be Mode O or 1, input
or output. The remaining three bits of Port C (0-2) can also beinput or output, selected with
the control word.

108 The Microcontroller Idea Book

Switches and Keypads

7

Switches and Keypads

Most microcontroller projects will include switches, a keypad, or some other way of
allowing users to control the circuits inside. The control might involve flipping a switch
begin an operation, pressing akey toto select an option, or entering anumber for the program
to useinitsoperations. For simpletasks, you can usetoggle, dide, or pushbutton switches.
Other projects might call for a keypad with an array of switches, with each labeled with a
number, letter, or other description. This chapter shows how to add each of these to your
system.

Simple Switches

Figure 7-1 shows two single-pole, single-throw toggle or slide switches connected to an
input port. Each has contacts that connect when the switch is closed, and open when the
switch is open.

In (A), when the switch is open, the pull-up resistor brings the input high. When the switch
closes, theinput connectsto ground and reads|ow. Switch (B) isthereverse: when the switch
is open, the pull-down resistor brings the input low. When the switch closes, it connects to
+5V and reads high.

You can connect a switch to an unused bit on the 8052-BASIC’s Port 1, to an input on an
8255 PPI, or to ainput on a 74LS244 buffer. The 8052-BASIC has internal pullups that
bring the inputsto +5V when they are not being driven by another source. So, if you connect

The Microcontroller Idea Book 109

Chapter 7

+5Y
[0K
(A) TOGGLE ANY INPUT PORT BIT
OR [-OPEN
SLIDE ©=CLOSED
SWITCH
+5Y
(B) TOGGLE T
OR
SLIDE
SWITCH ANY INPUT PORT BIT
[-CLOSED
15K ©=0PEN

Figure 7-1. You can detect the state of a toggle or slide switch at an input
port.

switch (A) to one of these inputs, the external pull-up is optional. The pulldown resistor for
switch (B) is 1.5K to ensure avalid logic low for LSTTL inputs. With an 8052-BASIC or
CMOS input, you can use a10K pulldown resistor.

If you want to offer a choice among several options, arotary switch can do the job. Figure
7-2 shows an 8-position switch connected to an 8-bit input port.

Reading a Switch

To find the state of a switch, you read the byte at its address and use BASIC-52's logical
operators to find the value of the bit of interest, just as you did when reading input portsin
Chapter 6. For example, to find the logic state of a switch at bit 7 of an input port at EOOOh,
use this statement:

A= (XBY(OEOOOH) .AND.80H) /80H

Or, in more general terms, use this format:

A= (XBY (address) . AND. 2 * *hit) /2 * *hit

110 The Microcontroller Idea Book

Switches and Keypads

+5V 10K
PULLUPS
A ANY 8-BIT INPUT PORT
——20 ol BIT @, SWITCH A
o o2 BIT 1, SWITCH B
Eo - o& BIT 2, SWITCH C
D BIT 3, SWITCH D
BIT 4, SWITCH E
BIT 5, SWITCH F
BIT 6, SWITCH G
BIT 7, SWITCH H

INPUT BIT = @ MEANS
SWITCH 1S SELECTED

Figure 7-2. Use a rotary switch to allow users to choose from among several
options.

where address is the location of the byte to be read in memory and bit is the bit number of
the switch.

Detecting a Switch Press

Momentary switchesare useful whenyou want to get the computer’ sattention. For example,
you might have a program that normally displays the current temperature and time, but
switches to a setup routine when you press a switch. On a normally open pushbutton
(momentary) switch, the contacts close when you press the switch, then open asyou release
it. In anormally closed momentary switch, the contacts open when you press, and close on
release.

Using Interrupts

An easy way to detect a switch press is with an external interrupt. The 8052-BASIC
automatically detects the switch press and branches to an interrupt-handling subroutine.

The Microcontroller Idea Book 111

Chapter 7

Listing 7-1. Displays a message when external interrupt 1 is detected.

10 ONEX1 100

20 DO

30 WHILE 1=1

40 END

100 PRINT “Interrupt detected”
110 RETI

For apushbutton-triggered interrupt, connect aswitch like Figure 7-1'stothe 8052-BASIC's
INTZ1 input at pin 13. Pin 13 will then be normally high. When you press and release the
switch, pin 13 will briefly go low.

Listing 7-1 isasimple program that waits for interrupts and jumps to an interrupt-handling
routine when it detects one, signified by pin 13 going low. Line 10 enables external interrupt
1 and specifies line 100 as the location to branch to when the 8052-BASIC detects an
interrupt request at pin 13. Lines 20-30 are an endless |oop that waitsfor an interrupt. Lines
100 and 110 are the interrupt-service routine. In this example the routine doesn’t do very
much; it just displays an on-screen message that the interrupt was detected, then returnsto
the main program loop.

Edge-detecting Interrupts

BASIC-52's TCON operator allows you to write to the 8052's special-function register
TCON, which enables you to set up interrupt 1 as edge-detecting or level-detecting. The
default after bootup or reset is edge-detecting, where interrupts are triggered by a falling
edgeat pin 13. If you want arising edgeto trigger aninterrupt, you' Il haveto add an inverter
at pin 13.

Edge-triggering is handy for detecting switch presses, because theinterrupt routine executes
only once, when the switch isfirst pressed, no matter how long you hold down the switch.

Switch debouncing. Evenwith edge-triggered interrupts, however, switch bounce can cause
multipleinterruptsto occur with asingle switch press. Switch bounce occurs because manual
presses of mechanical switches tend to be doppy. When you press a switch, the contacts
normally bounce open and closed several times before they close positively, and bounce
again asyou lift your finger and the contacts open.

The computer has to be able to tell the difference between a bounce and a genuine switch
press. Otherwise, each timeyou press aswitch, and again when you releaseit, the computer
will detect several rapid switch presses. One way to handle switch bounce is to ignore
keypresses that are less than a certain length, usually around 10-20 milliseconds, with the

112 The Microcontroller Idea Book

Switches and Keypads

exact value depending on the switch characteristics. Ignoring switch bounceis called switch
debouncing.

You can debounce aswitch in hardware or software. Because BASIC-52isslow, it has some
debouncing built-in. When the 8052-BA SI C detects an interrupt, it will ignore all interrupts
that occur before it exits the interrupt-handling routine. So, if an interrupt-handling routine
takes 20 milliseconds to execute, you probably don’t need to add any debouncing circuits
or delays. To add additional software debouncing, you can just add adelay loop like thisto
the interrupt routine:

105 FOR I=1 TO 100:NEXT I

Adjust the total count to the minimum value that prevents extra interrupts due to switch
bounce.

Figure 7-3 shows a hardware debouncing circuit that uses a 74HC14 inverter with Schmitt-
trigger input. Thecircuit generates aclean pulsewhen Slispressed, in spite of switch bounce
that may occur.

Point B, the inverter’sinput, is normally low, and point C, theinverter’s output, isnormally
high. When S1ispressed, C1 dischargesslowly through R2 and theswitch contacts. If switch
bounce occurs, the voltage at the inverter’sinput can’t change rapidly enough to affect the
logic state of the input. Only when the switch remains closed for around 50 milliseconds
does point B go high enough to cause point C to switch low.

In asimilar way, when the switch contacts open, C1 charges slowly though R1 and R2, and
pin C goes high again only when the contacts have remained closed for around 50
milliseconds. The Schmitt-trigger input ensures that the output pulse is clean even if the
input changes slowly.

As with software debouncing, you can experiment to find the minimum values that prevent
unwanted interrupts due to switch bounce. The debounce timeincreases as you increase the
values of C1 and R2.

Level-detecting interrupts

If you use a level-detecting interrupt instead of an edge-detecting one, the interrupt routine
executeswhenever thereisalow logic level at pin 13. So, for example, if you pressand hold
the switch in the above example, the interrupt routine will execute again and again, until
you release the switch.

L evel-triggered interrupts can be useful if you have multipleinterrupt sources. If each source
generates an interrupt request by turning on an open-collector output, you can tie all of the

The Microcontroller Idea Book 113

Chapter 7

R1 74HC 14

Figure 7-3. A hardware debouncing circuit, using a 74HC14
Schmitt-trigger inverter.

outputs together and the combined output will be low when any interrupt source is active.
To enablethe 8052-BASIC to identify the interrupt source, each source can also set a port
bit. Latching theinterrupt requests (with aflip-flop, for example) will ensurethat no requests
are missed. The 8052-BASIC can clear the latch by writing to another port bit when it
identifies the source.

For level-triggered interrupts, use this statement to clear bit 2 of the TCON register:
TCON= (TCON=TCON.AND. 0FBH)
To return to edge-triggered, use this statement to set bit 2 of TCON:

TCON= (TCON=TCON.OR.4)

Polling

When you don’t want to use an interrupt, an alternate way to detect akeypressisby polling,
which consistsof having the program check periodically to seeif theswitch hasbeen pressed.
In aprogram that prompts for input and then waits for the user to press a key, you can poll
continuoudly until you see aresponse. Listing 7-2 isan exampl e that assumes that you have
two normally open pushbuttons connected to pins 1 and 2 of the 8052-BASIC, asin Figure
7-4. Thisprogram stopsreading the switch assoon asit detectsaswitch press, so debouncing

114 The Microcontroller Idea Book

Switches and Keypads

8052-BASIC
I
NORMALLY = |Pl.©
OPEN %
PUSHBUTTON

—

2
NORMALLY = (PI.1
OPEN

PUSHBUTTON

'l

Figure 7-4. Two pushbuttons connected to port pins on the 8052-BASIC.

isn't required. When you use polling, you have to be sure to check the switch often enough
so that you won't miss aswitch press. For example, if you read the switch once per second,
and you press the switch for just 100 milliseconds, you may not detect the switch press.

Latching a Switch Press

Another solution to switch detecting isto latch the switch press, as Figure 7-5 shows. Inthis
circuit, aswitch press causes the Q output of a 74HC74 flip-flop to go low and remain low
until an external signal clears the flip-flop.

Thecircuit usestwo port bits: oneinput (P1.0) and one output (P1.1). Both should be set high
to begin. Theflip-flop’sQ output connectsto P1.0, which the program can read at itsleisure.
If the bit is low, someone has pressed the switch. To reset the bit, the program brings P1.1,
low, then high to clear the flip-flop and bring Q high again, ready to detect another switch
press. You can use any free port bits in place of P1.0 and P1.1.

Listing 7-2. Monitors two switches and displays a message when one is
pressed.

10 PORT1 = PORT1.0R.3 :REM set bits high to use as inputs
20 PRINT “Please press switch P1.0 or P1.1"

30 DO

40 A=PORT1.AND.3 :REM look at bits 0 and 1 only

50 UNTIL A<3

60 IF A=1 THEN S=1

70 IF A=2 THEN S=0

80 PRINT “switch P1.”,S," pressed"

90 END

The Microcontroller Idea Book 115

Chapter 7

+5YV Y 8052-BASIC
4
NORMALLY }‘ RE
OPEN m
PUSHBUTTON SleLk [Q2
10K +5Y 74HC7 4
= 2 ~l6 1
D Q P1.0Q
CLR
1
21p1 1

Figure 7-5. You can use a 74HC74 D-type flip-flop to latch a switch press. A
second port pin clears the flip-flop.

Adding a Keypad

Keypads offer more options than individual switches or pushbuttons, but at lower cost and
smaller size than a full keyboard. Examples of products that may use keypads include
electronic locks, EPROM programmers, and many test instruments. On some devices, the
keys have custom legends that describe the specific functions of the keys, but generic
numbered keypads are also useful.

Keypad Types

Some keypads have attached cables that terminate in a connector. Others have headers to
which you can solder wires or connect your own cable.

Different keypads follow different decoding schemes for detecting which key is pressed.
Some have a dedicated connector pin for each key and a single common pin to which the
pins connect when akey ispressed (Figure 7-6). You can wire and access these like a series
of individual switches, with a pull-up or pull-down resistor at each switch.

Other keypads use matrix encoding, where the switch connections are arranged in a
rectangular array. Figure 7-7 illustratesatypical hex keypad that usesmatrix encoding. There
arefour rows(Y') andfour columns (X) to which the switches connect. Each key corresponds
to a hexadecimal digit.

116 The Microcontroller Idea Book

Switches and Keypads

+5V

10K PULL-UPS
ANY INPUT PORT
. ¢ BIT @, SWITCH A
A_
"’ BIT 1, SWITCH B
B_
—
. BIT 2, SWITCH C
C_
. BIT 3, SWITCH D
D_
—
) BIT 4, SWITCH E
E_
—e
. BIT 5, SWITCH F
F_
—e
: BIT 6, SWITCH G
G_
—
. BIT 7, SWITCH H
R COMMON
J_ INPUT BIT = @ MEANS
8 _KEY - CORRESPONDING SWITCH
L INE-PER-KEY IS PRESSED
KEYPAD

Figure 7-6. A line-per-key keypad is a series of momentary switches, with
each switch having a common terminal.

In this keypad, each key acts as a normally open pushbutton whose contacts connect one
row and one column when the key is pressed. In Figure 7-7, pressing key #1 connects Y1
and X1, pressing key #2 connects Y1 and X2, and so on down to key #F a Y4, X4. By
determining which row and column are connected, you can detect which key has been
pressed.

Matrix encoding saves on hardware, since each key doesn’t require a dedicated signal line.

With Figure 7-7's keypad, you can detect any of 16 key presses with 8 signal lines. Sixteen
keysisapopular sizefor keypads, but larger and smaller sizesare also available. Telephone-

The Microcontroller Idea Book 117

Chapter 7

A
O

SN
don
Jo
HO

1~
—~ o
Ho
Jdm

-
-

X1 X2 X3 X4
Figure 7-7. A matrix-encoded keypad.

style keypads are widely available and versatile, since they have all 10 digits plustwo keys
(* and #) that you can designate for specia functions.

Decoding Unfamiliar Keypads

You can find surplus keypads for adollar or so each. These usually include no explanation
of their pin connections, so it’s up to you to figure out how to decode them.

To decode an unknown keypad, you need only an ohmmeter and a pencil and paper to record
your findings. To determine the key connections one by one, begin by clipping an ohmmeter
lead to one of the keypad's connector pins. Set the ohmmeter to alow scale, such as 200
ohms.

Pressakey and hold it down whiletouching the other ohmmeter | ead to each of theremaining
keypad pins in turn. When the ohmmeter reads a few ohms or less, you' ve found the pins
that correspond to the key in question. If you find no connection, move the first ohmmeter
lead to a different pin and repeat the procedure. When you find the two pins that connect,
write down their numbers and the key they correspond to.

Follow the same procedure for the other keys. As you progress, you may detect a pattern
that makes it easier to guess which pins will correspond to each keypress. Some keypads
don’t seem to correspond to any obvious layout, however. When you know how the keypad
decodes, you can wire the connections and write your programs to match.

118 The Microcontroller Idea Book

Switches and Keypads

Custom Keypads

It's al'so possible to create a keypad with legends that match your application. One source
for these in single or small quantities is Sil-Walker, which offers a variety of membrane
keypads in kit form.

A kit consists of the basic keypad, optional colored pads, afaceplate, and abezel. To create
acustom keypad, you apply an optional colored pad and your own legend to each key. You
can apply alegend using silk-screen printing, transfer-lettering, or afelt marker. You then
press the faceplate over the keypad, and press the bezel onto the faceplate and its mounting
surface to secure the keypad in its final location.

Using a Matrix-encoded Keypad

In amatrix-encoded keypad, the usual way to detect a keypressiswith scanning circuits. In
Figure7-7'skeypad, rowsY 1-Y 4 could betied high through pull-up resistors. Columns X1-X 4
could then be scanned, or brought low in sequence. As each column goeslow, thelogic level
at each row is checked, repeating until arow goes low, indicating that akey is pressed.

The column and row that are low identify the key that is pressed. For example, if X3 and Y2
arelow at the same time, key #6 has been pressed.

A Keypad Encoder

An easy way to interface a matrix-encoded keypad to the 8052-BASIC is to use National
Semiconductor’s74C922 16-key encoder chip (or the 74C923, which handlesupto 20 keys).
Figure 7-8 showsthe pinout, truth table, and waveforms of the 74C922. The chipisamember
of the 74C family, which uses CMOS technology but TTL-type part designations (like the
HCMOS family, but not high-speed). The chip is available from many parts sources.

The 74C922 has severa useful features:

e [t automatically translates each keypress into a 4-bit number (0000 to 1111). The chip
has four inputs (Y 1-Y4) and four outputs (X1-X4) that connect to the X and Y lineson a
keypad, and 4 data outputs (A, B, C, D) that identify the key that was pressed. The
74C922 contains its own scanning circuits, including internal row pullups. All you need
to add is a capacitor at the OSC input to set the scanning frequency, or you can use an
external clock to control the scanning.

e Keypresses are signaled automatically by a Data Available (DA) output, which goes

high when akey is pressed. Y ou can tie DA to an interrupt or port pin on the
8052-BASIC.

The Microcontroller Idea Book 119

Chapter 7

ROW YIC]1 18fbve+

ROW Y20 2 17 CIDATA OUT A

ROW Y303 16 IDATA OUT B

ROW Y4 4 1SEIDATA OUT C
0SCILLATORO S 14 FIDATA OUT D

KEYBOUNCE MASK [l 6 |30 0UTPUT ENABLE
COLUMN X407 12 IDATA AVAILABLE
COLUMN X308 11 0 COLUMN X1
GND O 9 10 1 COLUMN X2
740922

SWITCH D C B A
Y1, Xl @ o 0 0
Y1, X2 o o o |
Y1, X3 © o0 1 0
Y1, X4 o o 1| 1
Y2, Xl © 1 0 0
Y2, X2 o 1 o |
Y2, X3 o 1 1 0
Y2, X4 o 1 1 1
Y3, Xl 1 @ 0 ©
Y3, X2 10 o0 |1
Y3, X3 1 o 1 ©
Y3, X4 1o 1 1
Y4, Xl 11 o ©
Y4, X2 11 o0 |1
Y4, X3 11 1 0o
Y4, X4 | N

16-KEY ENCODER

DATA OUTPUTS

xi | L

x2 | L
X3 L] —

X4 L] .

Figure 7-8. Pinout, truth table, and waveforms for the 74C922 16-key
encoder for matrix-encoded keypads.

e |_atches store the last keypress. When you lift your finger from akey, the keypad's X
and Y lines no longer connect, and there is no way to know that a key was pressed. If
the computer is busy doing something else while the key is pressed, it may not see the
keypress at all. The 74C922 takes care of this by latching the data that corresponds to
the last key pressed.

120

The Microcontroller Idea Book

Switches and Keypads

¢ A single capacitor adds debouncing. A capacitor connected at KBM (keybounce mask)
sets the debounce period. With a 1-microfarad capacitor, the 74C922 ignores
keypresses shorter than 10 milliseconds. Only when a keypress lasts longer than this
does the chip latch the data and bring DA high. In asimilar way, after the key opens, the
debouncing must time out before a new key pressis detected. The debounce period
varies directly with capacitor size, with larger values increasing the time. By
experimenting with different values, you can adjust the timing until all key bounces are
ignored, yet no noticeable delay is required between key presses.

Adding a Keypad

Figure 7-9 showsthe 74C922 connected to the 8052-BA SIC system. The 74C922 interfaces
the keypad to a 72L S244 buffer, as described in Chapter 6. The 74C922 is shown addressed
at EOOOh, but you can use any available chip-select. Pin 13 of the 74C922 is tied low to
permanently enable the data outputs. Keypresses are read by reading the buffer at EO0Oh.

Thekeypad’'s X and Y lines connect to their corresponding pinson the 74C922. Dataoutputs
A-D connect to D0-D3 on the 8052’ sdatabus. DA, which signalswhen akey has been pressed,
connects to INT1 on the 8052-BASIC. If you want to use polling to detect keypresses, you
can use any input port pininstead of INTZ1.

DATA BUS (D0-D7)

+5V
7415244 8

g? 12 Y1 1Al i gDOUT A x 1 L ;1 X1

a2 1A [2|DOUT B X2 2 X2

STl A3 [21DouT C X318 X3

SLY4 1A4 DOUT D X412 o X4

—2Y1 2Al vt =N

—{2Y2 2A2E . y2l2 2

—S12Y3 2A3S [|OF y3S =13

—2v4 2naEs = Y4§ Y4

IS 0sC
QOH- 1K 2 6 |19 & 12 6 8x38
READ A 26 DA KBM MATR X
5 ENCODE
74HCT 32 INPUT BUFFER Cl KEYPAL
1. QuF T /Tcz
INTT ~<_f——r = o m
74C922
ANY)
AR, 16-KEY ENCODER
Figure 7-9. Circuits for adding a matrix-encoded keypad to an

8052-BASIC system.

The Microcontroller Idea Book 121

Chapter 7

A 1-microfarad capacitor at KBM and 0.1-microfarad capacitor at OSC give a keyboard
debounce of 10 milliseconds and ascan rate of around 600 hertz. Larger valueswill increase
the debounce time and decrease the scan rate. The 74C922's data sheet recommends
choosing KBM’s capacitor to be ten timesthe values of OSC's capacitor, so be sure to change
both if you change either.

Testing the Keypad

Listing 7-3 tests Figure 4’s circuit. The program waitsfor akey press and when one occurs,
displays the value of the key on the host computer.

The following paragraphs explain the program in greater detail.

Lines 10-25 are alookup table that translates the 74C922’s A-D outputsinto an ASCII code
corresponding to the key pressed. The table is stored at locations 1FFOh-1FFFh in external
RAM. The lookup table is arranged with the values of the 74C922's data outputs (0-Fh) in
ascending order. Noticethat thekey legends (0-F) do not follow inorder in thetabl e, because
the legends on the keypad correspond to the data outputs only at keys 4-6 and F.

Lines30-50 arethe main program loop. Thisdoes nothing except wait for aninterrupt. When
you press akey, the 74C922'sDA output goes high. The falling edge at INT1 then causesthe
program to jump to line 100.

Lines100-110read thevalue of thekeypressat ADO-AD3 and, usethelookup tableto translate
the key press into an ASCII code. For example, if the key labeled “7" is pressed, Y3 goes
low when X1 isscanned, and the 74C922’' sAD outputsidentify thekeypressas1000in binary,
or 8 decimal, which the 8052 reads at EOOOh. Line 100 ANDs AD0-AD7 with OFh to clear
bits4-7, leaving 8, the value of the keypress. Inline 110, 8 + 1FFOh = 1FF8h, and the value
stored at 1FF8h in external memory is 55, which is the ASCII code for the numeral 7.

Line 120 causes the character matching the keypressto display on-screen. The program then
returns to the main loop to wait for another key press.

If you have a keypad with different encoding, change the lookup table to match its layout.
Customizing the Interface

Listing 7-3 does little more than test the interface, but you can use the general ideain a
specific project. You can aso assign specia functions to individual keys. In an EPROM
programmer, these might be Select device, Program, \erify, and so on. If thefunctionsaren’t
labeled on the keys, you can describe them in an on-screen menu: Press 1 to select device;
press 2 to program; and so on. Then, when akeypressis detected, instead of just displaying
the value of the key, your program would branch to a subroutine that corresponds to the

122 The Microcontroller Idea Book

Switches and Keypads

Listing 7-3. Test program for Figure 7-9's circuits.

10 XBY (1FO0OH)=49 : REM 1
11 XBY (1F01H)=50 : REM 2
12 XBY (1F02H)=51 : REM 3
13 XBY (1F03H)=67 : REM C
14 XBY (1F04H)=52 : REM 4
15 XBY (1F05H)=53 : REM 5
16 XBY (1FO6H)=54 : REM 6
17 XBY (1F07H)=68 : REM D
18 XBY (1FO08H)=55 : REM 7
19 XBY (1F09H)=56 : REM 8
20 XBY (1F0AH)=57 : REM 9
21 XBY (1FOBH)=69 : REM E
22 XBY (1FOCH)=65 : REM A
23 XBY (1FODH)=48 : REM O
24 XBY (1FOEH)=66 : REM B
25 XBY (1FOFH)=70 : REM F
30 DO

40 ONEX1 100

50 WHILE 1=1

60 END

100 KEY=XBY(OEOOOH) .AND.OFH
110 DAT=XBY (1FOOH+KEY)

120 PRINT CHR(DAT)

130 RETI

requested function. Chapter 8 describes how to add asmall display to asystem, so you don'’t
have to use the host computer’s display for the menu.

For some projects, you may want to use the numeric values of the keys directly, rather than
interpreting them as ASCII codes. In this case, you'll need to revise the lookup table, or
create a second table that matches the numeric values of the key legends with their data
outputs. For example, a data output of O would correspond to 1, instead of 49 (the ASCII
codefor 1). Again, you usually can’t use the keypad encoder’ s data outputs directly because
they don’t correspond to the values printed on the keys.

If an application requires that users enter multi-digit numbers on the keypad, your program
will have to trandate the individual digitsinto asingle value. Listing 7-4 is a program that
waitsfor the user to enter a4-digit hex address, then displays the data stored at that address
in external RAM.

The Microcontroller Idea Book 123

Chapter 7

Listing 7-4. Reads the data stored a a 4-digit address entered by the user on
a keypad.

1 REM lookup table stores the numeric value of each key
10 XBY (1FOOH)=1 : REM 1
11 XBY (1F01H)=2 : REM 2
12 XBY (1FO02H)=3 : REM 3
13 XBY (1F03H)=0CH :REM C
14 XBY (1F04H)=4 : REM 4
15 XBY (1FO5H) =5 : REM 5
16 XBY (1F06H)=6 : REM 6
17 XBY (1F07H)=0DH :REM D
18 XBY (1F08H) =7 : REM 7
19 XBY (1F09H)=8 : REM 8
20 XBY (1FOAH) =9 : REM 9
21 XBY (1FOBH) =0EH :REM E
22 XBY (1FOCH) =0AH :REM A
23 XBY (1FODH) =0 : REM O
24 XBY (1FOEH) =0BH :REM B
25 XBY (1FOFH) =0FH :REM F

30 A=0

40 COUNT=3

50 PRINT “Please enter a 4-digit hex address to read: ”
60 DO

70 ONEX1 100

80 WHILE 1=1

90 END

100 KEY=XBY(OEOOOH) .AND.OFH: REM read the key

110 DAT=XBY (1lFOOH+KEY): REM find its wvalue

120 A=A+ (DAT* (16**COUNT)): REM add to the total

130 COUNT=COUNT-1: REM keep track of # of digits read
140 PHO. DAT,

150 IF COUNT=-1 THEN GOSUB 200: wait for 4 digits

160 RETI

200 PRINT : PHO. XBY(A)," is stored at address “,A

210 PRINT “Please enter another 4-digit address to read: *
220 COUNT=3

230 A=0

240 RETI

124 The Microcontroller Idea Book

Displays

8

Displays

In addition to switches and keypads for user input, most projects also include a display to
let users know what's going on inside. The type of display depends on the kinds of
information you want to show. For simple status indicators, discrete LEDs will do the job.
For numbers, you can use 7-segment displays. And if you need to display text or other
symbols in addition to numbers, character-based LCD modules are a good solution. This
chapter will show how to use each of these in an 8052-BASIC system.

Using LEDs

Discrete, or individual LEDs (light-emitting diodes) are an easy way to indicate status, such
asOn, Ready, Modesel ected, and so on. They arecol orful, eye-catching, and easy to interface
to 5-volt logic. Available colors now include blue as well as red, green, and yellow. Some
individual LED packages can emit red, green, or amber light, depending on the voltages

applied.

Like other diodes, current passes through an LED in one direction only. When a positive
voltageis applied to the anode, current flows and electrons migrate across an energy gap in
the LED, causing it to emit light. The size of the energy gap determines the voltage drop
acrossthe LED, aswell asthe color of light emitted. A tinted case can also vary the color.

The Microcontroller Idea Book 125

Chapter 8

Table 8-1. The forward voltage drop across an LED varies with the color.

LED color typical forward voltage (volts)
Red 1.6
Green 20
Yellow 2.0
Blue 3.2

Table 8-1 shows typical forward voltages for different colors of LEDs. Typica LED
operating currents are between 10 and 20 milliamperes. For abright display with low power
consumption, look for types labeled high efficiency.

One disadvantage to LEDs is that the light from most is hard to detect in bright light,
especially outdoors. A tinted, transparent sheet of plastic mounted over the display can make
it more visible in bright light. For red LEDs, transparent red or purple works well.

For best visibility over awide area, look for LEDs with awide viewing angle. This means
that the LED emits light in a wide cone, so you don’t need to view it straight-on.

LED Interfaces

Figure 8-1 shows examples of LED interfaces to output ports in an 8052-BASIC system.
The outputs of the 80(C)52 and 82(C)55 can't provide enough current to drive an LED
directly. But you can drive an LED with a 74LS374 or 74HC374 latch (A, B), or with a
buffer or inverter driven by any output port (C, D).

With LSTTL drivers, you should design your circuit so that alow output turns on the LED,
since LSTTL outputs can sink more current than they can source. With HCMOS or
HCTMOS outputs, either a high or low output can turn on the LED.

Use a series resistor to limit the current through the LED. For a brighter display, decrease
the value of the resistor. Most L EDs can handle 20 milliamperes of continuous current. You
can measure the current directly by connecting an ammeter in series with the LED and
resistor. Or, you can calculate the current by measuring the the voltage across the series
resistor and dividing it by the resistor’s value. For example, 2.25V/150 ohms = 0.015
amperes, or 15 milliamperes.

Both LSTTL and HCMOS devices are capable of 20-milliampere output currents. At these
higher currents, the output voltage isn’t specified, but should be enough to light an LED.

To turn on an LED at a port, write a 1 or O, as appropriate, to the bit that controls it, as
described in Chapter 6. Listing 8-1 assumes that you have eight LEDs connected to the

126 The Microcontroller [Idea Book

Displays

745374 +5V
74HC374 74HC374
0=0FF
[=ON
ANY Q OUTPUT \R&QLED
(A) ¢§xLED (B) RI
R1 ANY Q OUTPUT O on_
+5V
W LED
R1
ANY ©@=0N
(D) PORT | =0FF
OUTPUT
HCMOS
OR LSTTL
OUTPUT
R1 VALUES FOR
[5mA LED CURRENT
LED COLOR R1
RED 180
GREEN 150
YELLOW 150
BLUE 50

Figure 8-1. LED interfaces to output ports. Use an HCMOS output if you
want a high output to turn on the LED. Use either HCMOS or LSTTL if you want
a low output to turn on the LED.

The Microcontroller Idea Book 127

Chapter 8

Listing 8-1. Controls eight LEDs at an output port.

10 A=0EQOOH: REM address of LEDs

20 L=0FFH: REM initial control value for LEDs
20 XBY (A)=L: REM turn off all LEDs

30 DO

40 INPUT “Select an LED (0-7): ”,B

50 INPUT “Turn on or off (0=o0ff, 1l=on)? ”,C
60 IF C=0 THEN L=L.AND. (OFFH-2**B)

70 IF C=1 THEN L=L.OR.2**B

90 XBY (A) =L

80 WHILE 1=1

90 END

outputs of a 74L S374 addressed at EOOOh. The LEDs are connected asin Figure 8-1B , with
logic-low outputs turning on the LEDSs. Listing 8-1 tests the circuit by allowing you to turn
individual LEDs on and off.

Bi-color LEDs

Bi-color LEDs have both ared and agreen LED inside a single package. By turning on one,
both, or neither, you can use asingle indicator to show as many asfour states. Some bicolor
LEDs have two leads, while others have three. Figure 8-2 illustrates.

In the 3-lead, or common-cathode type, the cathodes of both LEDs connect internally (A).
To turn on an LED, you ground the cathodes through a current-limiting resistor and apply
power to the anode of the desired LED. When both LEDs are powered, you get an amber
light. Removing power from both turns the LED off, giving atotal of four states that the
device can display. Instead of the one current-limiting resistor shown, you can connect a
resistor to each anode, to set the current through each LED individually.

In a2-lead, or parallel-connected, bicolor LED, the anode of each LED connects internally
to the other’s cathode (B). To turn on thered LED, you apply +5V to terminal A and ground
terminal B. Toturn onthegreen LED, you do thereverse: terminal A isground, and terminal
B is+5V. With this type, you can’t turn on both LEDs at once.

With either type, by adding an inverter, you can use a single output to control both LEDs
(C, D).

128 The Microcontroller Idea Book

Displays

A B
AO————
ki
W
GREEN [RED
A B
A
S5 To 20 5FF o o
GREEN | o BO—— GREEN | @ 1
RED | RED [
AMBER | 1 OFF Lol
(A) COMMON-CATHODE TYPE, 2-LINE CONTROL (B) PARALLEL CONNECT TYPE, 2-LINE CONTROL
[-RED D O]
0-GREEN O 0-GREEN
ANY ANY
HCMOS HCMOS w0
INVERTER INVERTER o
GREEN[RED
220
(C) COMMON-CATHODE TYPE, [-LINE CONTROL (D) PARALLEL CONNECT TYPE, 1-LINE CONTROL

Figure 8-2. Ways to connect bicolor LEDs .

7-segment Displays

If you want to display numbers, 7-segment displayswill do thejob. Each digit on thedisplay
contains seven segments. Numerals are displayed by turning on different combinations of
segments, as Figure 8-3 shows. Decoder chips make it easy to operate one or more displays
with a minimum of programming and added components. Seven-segment displays are
available as LEDs, where each segment is alight-emitting diode, and as LCDs, where each
segment isaliquid-crystal display. We'll ook at the LED type first.

7-segment LEDs
A 7-segment LED contains seven individual LEDs arranged in the pattern shown in Figure

8-3. Sometimesthereisalso adecimal point (or two, oneoneach side). Thereare also special
leading-digit modules that display only a 1 and a plus-or-minus symbol.

The Microcontroller Idea Book 129

Chapter 8

F] Ll Il
Lo /J/:/ /d E/

]
Iy |

gﬂ:_g g —
c ol L5 cc c ol i _Ica
] T .
. o T T
d "l e d "l e

COMMON CATHODE COMMON ANODE

Figure 8-3. A 7-segment display can show numbers from 0 to 9, plus hex
digits A-F. In a common-cathode LED display, all of the cathodes connect
together, while in a common-anode display, all of the anodes connect.

Thedisplays comein two types: common-anode or common-cathode. In acommon-anode
display, the anodes of each segment connect internally. To use the display, you connect the
anodes to a voltage source and turn on individual segments by grounding them through a
current-limiting resistor. A common-cathode display is the opposite: the cathodes connect
internally, so you ground the cathodes and apply voltages through current-limiting resistors
at the segments you want to light.

Deciphering pinouts
Unfortunately, there isn’t much standardization for pinouts of 7-segment displays. If you
don’t know the pinout for adisplay, you canfind it by experimenting. You'll need a330-ohm

resistor and a 5-volt supply.

Sometimes you'll find CC or CA stamped on the package to indicate common cathode or
common anode. If even this information is lacking, begin by connecting one lead of the

130 The Microcontroller Idea Book

Displays

45118
BCD-TO-7-SEGMENT
82(C)55 *5V LATCH/DECODER/DRIVER

3

LT 13 150 4 cc
4m a D%
2LE 12 150 b8
N b—/\/\/v—{>'—u-
- A
s 15®c§ |
X
d]@ 150 d[:% _
X
o152 GE% _
X

X
USE ANY PORT pHs 122 f -

OUTPUTS TO R

CONTROL A-D = %-_
% -

PA.
PA.
PA.
PA .

— N (N[N

/7
|
2
6

W — O
O O W >

DIGIT
DISPLAYED
) f b

— — O O OO0 OO S S|lu
S0 —— = — 00 O 0

SO0 —— 90O —— O O|lw
— Q90 — 90 -9 -0 — o>

O 0 N O U DN NN —
[0)
@]

COMMON-CATHO DE
7-SEGMENT LED

Figure 8-4. Four output port pins can control a 7-segment LED.

resistor to ground on your power supply. Clip the resistor’s other end to one of the LED’s
pins. Use atest |ead to touch the power supply’s+5V output to each of the other pinsinturn.

If only one or two connections cause a segment to light, you have acommon-anode display,
and thecommon anodeisthe pin or pinsthat connect to +5V when the segment lights. (There

The Microcontroller Idea Book 131

Chapter 8

Listing 8-2. Causes a 7-segment LED to display each digit in sequence.

10 REM configure all ports as outputs

20 XBY (OFCO03H) =80H

30 REM write each value to the display in sequence
40 FOR I=0 TO 9

50 XBY (OFCOOH)=I

60 REM delay after each write

70 FOR J=1 TO 500:NEXT J

80 NEXT T

90 END

may betwo common-anode pins.) To find the pin that controls each segment, leave the +5V
lead on a common-anode pin, and connect the resistor to each pinin turn, noting the results.

For a common-cathode display, to find the common-cathode pin or pins, connect a pin to
+5V, and touch the othersto ground through the 330-ohm resistor. The pin or pinsthat cause
the segment to light are the common-cathode connections. To find the pin that controls each
segment, move the +5V lead to each pinin turn, and note the results.

Interfacing
For 7-segment decoder/drivers, you can choose from single-digit and multi-digit chips.

Single-digit driver. Figure 8-4 shows a 7-segment display controlled by a4511B latch/de-
coder/driver. The display showsthe value of the 4-bit number at the 4511’ sdatainputs A-D.
The 4511 will drive common-cathode displays directly. Common-anode displays require
inverters at the segment outputs. You can use any output port bitsto control the display. An
8-bit port will control a2-digit display.

Listing 8-2 tests Figure 8-4's circuits by displaying each digit in sequence. The program
assumesthat a display connectsto bits 0-3 of Port A on an 8255 addressed at FCOOh. If your
system has different addressing, change the program to match.

Multi-digit driver. If you want to display more than acouple of digits, there are specialized
chips that will drive and control multiple-digit displays. One example from Intersil (now
part of Harris Semiconductor) is the ICM7218D multiplexed display driver, which can
control up to 8 common-cathode digits. Figure 8-5 illustrates. For common-anode displays,
use the ICM7218C.

The segments of all eight displays connect to the 7218D’s segment-driver outputs (a-g, dp).
Each display’scommon cathode connectsto oneof eight DIGIT outputs. Aninternal oscillator

132 The Microcontroller Idea Book

Displays

[CM7218D
8-DIGIT MULTIPLEXED
82(C)55 LED DRIVER
PA . Q ; L211po o6 p
PA. | 5——LiD1 b2 b o
PA.2 131D cf2e c
PA.3 1= 141p3 JH8
PA .4 Z1p7 ef2l
f22 / //
PA.S f5o——2IDA0 9[22 S
PA. 615 lgDA] DECIMAL H-2
PA.7 DA2 POINT cc
L]
pC .43 8WRTTE DIGIT 222 oD[G]T 2
+5Y DIGIT 3%L— __
9 DIGIT 4H—
USE ANY IQMODE DIGIT 5&
PORT OUTPUTS v+ DIGIT 6K —
TO CONTROL Faa el pIGIT 7R
ICM7218D = DIGIT 824 b=
cc
B
UP TO 8
DIGITS
TOTAL
[D@-1D3 SELECT DIGIT @-7 o DIGIT 8
ID7 CONTROLS DECIMAL POINT b
C
PIN O (MODE) : 57
HIGH = HEX (0123456789ABCDEF) e 7
OPEN = CODE B (@123456789-EHLP) T
LOW = SHUTDOWN (OFF) —
cc

Figure 8-5. The ICM7218D can control up to eight 7-segment LEDs.

turns on each of the digits in sequence. This means that each of the displaysison just 1/8
of thetime.

The 7218D drives each segment at 20 milliamperes peak current, for an average current of
just 2.5 milliamperes. The chip takes advantage of thefact that LEDscan withstand rel atively
high pulsed currents, and that a pulsed LED actually appears brighter than a constantly-
driven LED with the same average current. Twenty milliamperesiswell within the allowed

The Microcontroller Idea Book 133

Chapter 8

Listing 8-3. Controls eight 7-segment LEDs with ICM7218 driver.

10 REM address of 8255 Port A

20 A=0FCO00H

30 REM address of 8255 control word
40 X=A+3

50 REM set 8255 for all outputs

60 XBY (X)=80H

70 REM set WR

80 XBY (X) =9

90 REM write to each digit

100 FOR M=0 TO 7

110 REM step through all numbers at each digit
120 FOR I=0 TO 8

130 REM add 10h to turn off decimal point
140 D=I+10H+M*20H

150 GOSUB 500

160 REM delay to display each digit
170 K=500

180 FOR J=1 TO K : NEXT J

190 NEXT I

200 NEXT M

210 END

490 REM write data to port A and toggle W (PC.4)
500 XBY(A)=D

510 XBY (X)=8H

520 XBY (X)=9

530 RETURN

range for peak current for most LEDs, and the 2.5-milliampere average current causes the
displaysto appear brighter than you might expect. With all digitsdisplaying 8's, thiscircuit
draws 140 milliamperes, so be sure your power supply can handleit.

Towrite avalueto the display, you select the digit with data-address inputs DAG-DA2, write
the data to inputs ID0-ID7, and strobe WRITE low. The WRITE pulse must be at least 400
nanoseconds wide, and 1D0-1D7 must remain valid for at least 125 nanoseconds after WRITE
goes high. BASIC-52 is dow enough to meet these requirements, using XBY statements to
write to the port that controls the 7218C.

Pin 9 alows you to select one of three modes, which determine what digits the displays
show. In Code B mode, you can display the message HELP.

134 The Microcontroller Idea Book

Displays

In Figure 8-5's circuit, an 82(C)55 controls the 7218C. For complete control, the circuit
requires 10 outputs. Bits 0-4 of Port A determine the datato be written, including adecimal
point controlled by ID7. If you don’t need the decimal point, tie pin 7 of the 7218C low. Bits
5-7 of Port A select the digit to write to. If you have four or fewer displays, you can tie one
or more of these lines low and free up another port bit.

Port C, bit 4 controls WRITE. The display-mode input is tied high to select hexadecimal
mode. If you instead tie pin 9 to a port bit, you can turn off the display by bringing the bit
low. To allow selecting different modes, connect an additional output bit to the 7218D’s
MODE input.

Listing 8-3 uses the 7218D to display data, usng Figure 8-5's circuit.
7-segment LCDs

An dternative to LEDs is liquid-crystal displays (LCDs). Unlike LEDs, which consume
several milliamperes per segment, LCDs are voltage-controlled and require very little
operating current.

Compared to LEDs, LCDs are easy to read in bright light. However, because LCDs don'’t
emit light as LEDs do, but merely absorb or transmit it, you need additional lighting to see
themin thedark. LCDs aso tend to have narrower viewing angles than LEDs. So, whether
to use LEDs or LCDs may depend on where and how you will use the display.

Most 7-segment L CD modul es contain two or moredigits. Likethe LEDs, a7-segment LCD
creates a numeral by turning on selected segments.

Each LCD segment containsathin layer of liquid crystal between two layersof glass. Liquid
crystals are organic compounds that act as electrically controlled light polarizers. In a
positive-image display (the most common type), applying avoltage across a segment causes
the segment to appear dark, or opaque, while removing the voltage causes the segment to
appear light-colored, or transparent. Negative-image displays are opague when not powered,
and transparent when powered. By applying and removing voltages across individual
segments, you can display numeric, alphabetic, and other characters.

Applying aconstant voltage to an LCD segment will eventually destroy it. Instead, you must
drivethe segment with an alternating voltage, typically asquarewavethat alternately applies
+5 and -5V across the segment.

Single-digit driver. Figure 8-6 shows an LCD module driven by a 4543B LCD latch/de-
coder/driver. The 4543 isalot like the 4511 LED driver, with the addition of a phase input
that accepts asquare wave for driving the segments. A typical drive frequency isaround 100
Hertz. A 555 timer provides the phase input, or you can use any oscillator output.

The Microcontroller Idea Book 135

Chapter 8

45438
*3Y LCD DECODER/DRIVER SEGMENTS
L Lo ~ a ~
—
el
82(C)55 = . A
PA.oF =1 .
— —
PA. 1|2 Sig
PA. 22 2ic
e C
PA. 3H 4o
d
——lJ
Slpp, 7-SEGMENT LCD
Yy DIGIT
DC B A |DISPLAYED
' 2000 @
USE ANY PORT
ouTPUTS TO oK Rsﬁ vf 200l 1
CONTROL A-D. - 201 0 2
2 TRIG 00 | 1 3
ouTE 2100 4
6
THRESH 100HZ 21 01 5
1 GND LCD DRIVE o1 1o 6
™ 1 VOL TAGE o1 11 /
0. 1uF 1 000 8
1 100l 9

Figure 8-6. A 4543B driver can control a 7-segment LCD. A 555 timer
controls the drive voltage.

Asin Figure 8-4, you control the display by writing to inputs A-D. If the display contains
other types of segments, such as+ or aleading 1, you can control theseaswell. For example,
for aleading 1, connect digit 1's two segments to pins 10 and 11 on the 4543. When you
write 1 to the data inputs, the appropriate segments will light.

Multi-digit driver. Aswith the LEDs, there are driver chipsfor multi-digit LCD modules.
Figure 8-7 shows Telcom Semiconductor’s (formerly Teldyne) TC7211A, which will drive
four 7-segment LCDs, and includes an on-chip oscillator and backplane driver.

To display anumber using Figure 8-7’s circuit, follow these steps:

136 The Microcontroller Idea Book

Displays

TELCOM
TC7211A

4-DIGIT DISPLAY
DECODER/DRIVER

82(C)55
PA.0Q ; 2/
PA. 1 15 28
PA. 2| 29
PA.3 30
pa. 429 31
39 32
PA.5S
38 33
PA. 615>
PA.7 34
USE ANY
OUTPUT
PORT TO
CONTROL
TC721 1A
36|
+5Y
7 1
35
5

BO]
Bl
B2
B3 |

DIl 7]
D2
D3
D4 _|

0SC

GND

DATA
IN

DIGIT
SELECT

BACKPLANE

Qo - 0O A O T A «Q@ - O Ao O T O Q@ - O A O T O

Q@ - 0O Ao O T O

4-DIGIT
7-SEGMENT
LCD MODULE
37
38 E‘*
39
40 Z DIGIT 1
2 SEGMENTS
2 e
. r
g
6 —_
7 a
g b
9 Z DIGIT 2
[0 SEGMENTS
[2 ?
1
g
13 B
[4 E
(5
16 Z DIGIT 3
17 SEGMENTS
19 ?
[8
g
20
21 E N
22
23 Z DIGIT 4
24 SEGMENTS
26 ?
25
g
BACK PL ANE

EICT]]

/

ESLTL]

J

Figure 8-7. Withthe TC7211A decoder/driver, you can control a 4-digit

display with 8 port bits.

The Microcontroller Idea Book

137

Chapter 8

(1) Write the number you want to display to datainputs Bo-B3, and bring a digit-select input
(D1-D4) high to select the digit to write to. You can use the same XBY statement to do both.
For example, to write 7 to digit 2, use this statement: XBY (port address) =2 7H.

(2) With the data still on B0-B3, bring the digit-select input low. The data must remain on
BO-B3for at |east 200 nanoseconds after the digit-select input goes low. For step 1'sexample,
you would write XBY (port address) =07H.

Follow the same procedure for each digit, and the TC7211 will continue to drive the
appropriate segments on al four digits. To change the value of adigit, repeat steps 1 and 2.

Displaying Messages

Sometimesadevice hasto display morecomplex messagesthan simple LEDsand 7-segment
displays can handle. For example, you might want to display messages like these:

Please enter your access code.

Select function:
Read
Program
Verify
Exit

wind is from the west at 12 mph
Total cost = $5.82

With BASIC-52, you can use the host computer’s display, but thisisno help if you want to
create a stand-alone project that doesn’t require a personal computer. In these situations, a
character-based dot-matrix LCD module is a solution.

These modules can display messages made up of numbers, characters of the alphabet, and
other symbols (for math functions, for example, or even symbols you design yourself).
Figure 8-8 illustrates. Devices that use this type of display include laser printers and test
equipment.

The Controller Chip
A special controller chip makesit easier to use LCD modulesthan you might think. Hitachi’s
HD44780 LCD controller is an 80-lead surface-mount chip that takes care of the details of

controlling the individual dots, or segments, on the display. For aslow as $10, you can find
complete modules that contain an LCD panel and small circuit board containing the

138 The Microcontroller Idea Book

Displays

4 T
Figure 8-8. With a character-based dot-matrix LCD module, you can display
messages as well as numbers.

controller chip. Applying power, reading, and writing to the module require just 14
connections, or fewer, depending on your configuration. The HD44780 can control displays
of up to 80 characters.

Learning to program the HD44780 does take some time and experimenting, but the result
is auseful and flexible display. Once you’ve had some practice, future projects using the
displays are simpler, and you can reuse or adapt portions of your programsin other projects.

Many LCD modules use the HD44780 or a compatible controller (the OKI M6222 is an
example). If a module uses the same 14-line interface discussed below, chances are it’'s
compatible with the HD44780.

About the Modules

The character-based LCD modules are available from many companies, including Philips,
Optrex, and Densitron. The surplus market often has good deals. Complete technical
information on the controller and displays is available from Hitachi and the display
manufacturers, and from some distributors and catalogs.

Thedisplay of one of these modul es contains one or more rows of character positions. Each
character position consists of amatrix that istypically five segments, or dots, wide and eight

The Microcontroller Idea Book 139

Chapter 8

segments tall. (The HD44780 can also control matrices that are 11 segments tall, for better
display of characters with descenders, like g, p, and g.)

Themoduleforms characters by turning on the appropriate segmentsin acharacter position.
For example, to display an L, the module turns on one vertical column and one horizontal
row of segments. For most characters, the bottom row is reserved for displaying a cursor,
which leaves 35 segments to form the character.

Displays are available in several sizes. Popular sizesare 1 x 16 (1 line of 16 characters), 2
x 16, and 2 x 20. Displays larger than 80 characters require supplemental driver chipsalong
with the HD44780, but the displays can use the same interface.

Table 8-1 summarizes the signalsin the 14-line interface.
Power Supplies and Backlights

The power supply (pin 2) isasimple +5V DC. The modules contain their own oscillators
todrivethe LCD segments. Typical power consumption for an entire moduleisjust acouple
of milliamperes. A contrast input (pin 3) allowsyou to adjust for best viewing under varying
light conditions, viewing angles, and temperatures.

Some LCD modules use backlighting to allow viewing in dim light. A module may be
reflective (which does not use backlighting), transmissive (which must use backlighting),
or transflective (which may use backlighting or not). With atransflective display, you can
add a switch to enable users to turn the backlighting on or off as desired.

One popular type of backlight is an electroluminescence (EL) panel behind the LCD
segments. An EL panel emitsadiffuselight that provides abright background for the LCDs.
Electroluminescent backlighting requires first of all, a module that contains an EL panel,
and second, an inverter module to provide the high-voltage alternating signal required to
power the panel. The inverters typically convert +5 volts to around 100 volts RM S at 400
Hertz. Inverters are usually offered along with the modules that use them, so you shouldn’t
have to construct your own. The backlighting requires several milliamperes.

Incandescent and LED backlights are other options for illuminating L CDs.

Inside the Display Controller

The HD44780 LCD controller is actually a small, specialized microcontroller in itself. It
contains itsown RAM and ROM, and executes the 11 instructions shown in Table 8-2. The
instructions perform tasks like clearing the display, writing a character to the display,
selecting a position on the display, and reading information from the display. To use the
controller, you need to be familiar with what it contains and the instructions that control it.

140 The Microcontroller Idea Book

Displays

Table 8-1. LCD modules containing the HD44780 controller often use this
14-line interface.

Pin Symbol Input/ Function
Output
1 VSS Input Signal Ground
2 VDD Input Supply Voltage (+5V)
3 VO Input Contrast adjust
4 RS Input Register select (1=data; O=instruction
register, busy flag/address counter)
5 R/W Input Read (1)/write (0) select
6 E Input Enable
7 DO e} Data bit O
8 D1 1’0 Data bit 1
9 D2 I/O Data bit 2
10 D3 I/O Data bit 3
11 D4 I/O Data bit 4
12 D5 I/O Data bit 5
13 D6 I/O Data bit 6
14 D7 I/O Data bit 7
Memory Areas

TheHD44780's on-chip memory includes a CG (character-generator) ROM, CG RAM, DD
(display data) RAM, an instruction register, and a data register.

TheCG ROM storesthe segment patternsfor generating 192 different characters, including
the Roman (English) alphabet in upper and lower case, numbers, some math and other
special symbols, and Japanese kanacharacters. Thesearefixed in ROM and can’t be altered.

The CG RAM stores segment patterns for up to 16 user-designed characters such aslogos,
special symbols, or other simple graphics characters that you design on the 5 X 8 matrix.
To create a custom character, you write a series of 5-bit words to the CG RAM. Each word
represents the segment pattern for one row in the desired character. The patterns stored in
CG RAM disappear on powering down, so you must reload them on each time you power

up.

The Microcontroller Idea Book 141

Chapter 8

Table 8-2. Instruction summary for the HD 44780 LCD controller.

Instruction RS RW D7 D6 D5 D4 D3 D2 D1 DO Function Execution
time
(max)
Displayclear 0 O O O O O O O0 O 1 Clear display. 1.64
Reset display from shift. msec
Set DD RAM=0
Display/cursor 0 0 O O O 0 0 O 1 X Shift=0. 1.64
home DD RAM=0 msec
Entrymode O O O O O O O 1 I/D S ID:increment(1), 40 psec
set decrement (0) cursor or
display shift after data
transfer.

S: shift on (1) , off (0).

Displayonfoff 0 0 0O O 0 O 1 D C B D:displayon(l),off(0). 40 pusec
C: cursor on (1) , off (0).
B: cursor blink on (1) ,

off(0).
Display/cursor 0 0 0 0 O 1 S/IC RL X X SIC:shiftdisplay (1), 40 psec
shift cursor (0).

RI/L: shift right (1), left (0).
Functonset O O O O 1 DL N O X X DL:8-hit(1), 4-bit (0) 40 usec

interface.

N: dual (1), single (1) line

display.
CG RAM 0 O O 1 CG5CG4CG3CG2CGLCGO Load address counter 40 usec
address set with CG0-CG5.

Subsequent data goes to

CG RAM.
DD RAM 0 0 1 DD6 DD5 DD4 DD3 DD2 DD1 DDO Load address counter 40 psec
address set with DDO-DD6.

Subsequent data goes to

DD RAM.
Busy 0 1 BF AC6 AC5 AC4 AC3 AC2 AC1 ACO Read busy flag (BF) and 0
flag/address address counter (ACO-
counter read ACS6)
CG/DDRAM 1 0 D7 D6 D5 D4 D3 D2 D1 DO Writedata(D0O-D7)to CG 40 usec
data write RAM or DD RAM.
CGDDRAM 1 1 D7 D6 D5 D4 D3 D2 D1 DO Place datafrom CG 40 psec
data read RAM or DD RAM on DO-

D7.
X=don't care

142 The Microcontroller [Idea Book

Displays

Each character in the CG ROM and CG RAM has an 8-hit address, or character code.
Conveniently, the codes for the upper and lower-case Roman aphabet and common
punctuation are same as the ASCII codes for those characters (21h through 7Dh). For
example, the pattern for A is stored at address 41h, B is stored at at 42h, and so on.

An8-hitinstruction register (IR) storesinstruction codes and addresses, and an 8-bit data
register (DR) stores character codes. When you read or write to the chip, you must select
the appropriate register.

The DD RAM stores up to eighty 8-bit character codes. Each character position on the
display correspondsto an addressin the DD RAM, and the character codes stored inthe DD
RAM determine what is displayed at each position.

On power up, on a 2-line display, the leftmost position on the top line has an address of 0,
with the rest of the positions in the line addressed in sequence. The second line begins at
40h, even if the top line has fewer than 40h positions.

Theinstructionsallow you to configureamodule so that the DD RAM’s addressincrements
each time acharacter iswritten to the display. Thisway, the characters automatically appear
in sequence on the display without your having to specify an address each time.

Because the second line begins at 40h, however, the display will not wrap around automat-
ically to thisline. For example, on a2-line, 16-position display, line 1 ends at OFh and line
2 begins at 40h. To move from the rightmost position of line 1 to the leftmost position of
line 2, you have to change the address counter to 40h. In addition, some displays with a
single physical line of characters have two logical lines. In a 16-character display of this
type, the first 8 characters are addressed from 0 to 7, and the second 8 are addressed from
40h to 47h. With this type of display, you must set the address counter to 40h before you
write to the second half of theline.

On asmall display where all 80 bytesof DD RAM aren’t needed, you can use the spare DD
RAM as general-purpose RAM.

Reading and Writing
Writing to the LCD module involves the following steps:

Bring RS high to write data, or low to write an instruction.
Bring R/W low.

Bring DO-D7 to their desired states.

Wait at least 140 nanoseconds.

Bring E high for at least 450 nanoseconds.

Bring E low.

The Microcontroller Idea Book 143

Chapter 8

CHARACTER - BASED

DOT-MATRIX
82(C)55 LCD MODULE
L' 6ND
+5YV
21 15y
100K S—2] CONTRAST
PC .4 if - g RS
PC.6 % 5 R/W
PC.5 E
PA . Q 2 g DO
PA. 11 510!
PA.2 1 5102
PA.3 25 7103
PA.41=3 7104
PA.5 =g 15105
PA.6 == 7106
PA.7 D7

FOR MAXIMUM DISPLAY CONTRAST, TIE PIN 3 OF LCD MODULE TO GND.
FOR WRITE-ONLY INTERFACE, TIE PIN 5 OF LCD MODULE TO CGND.

Figure 8-9. Using an 8255 to control a character-based LCD module.

Read operations are similar to writes, with RW high instead of low. The data appears on
DO-D7 in 320 nanoseconds or less after E goes high.

The HD44780 cannot accept a new instruction until it has finished executing its previous
instruction. Table 8-2 shows the maximum time each instruction requires.

BASIC-52 is slow enough that you don’t have to worry about the required delays. If you're
using an assembly-language routine, your program must include delays after each instruc-
tion, or you can use the instruction that reads the HD44780’s busy flag at D7 to determine
when the module is ready to accept a new instruction.

144 The Microcontroller Idea Book

Displays

Interfacing

Full control of an LCD module requires 8 bidirectional lines for reading and writing data
and 3 outputs for the control signals. To save four lines, you can use the 4-bit data interface
described later. Also, the ability to read the display and the busy flag at D7 are optional. If
you give these up, you can use outputs (such asthe 74HC374’s) instead of bidirectional port
bits for D0-D7, and eliminate one of the control lines by tying RW low.

Figure 8-9 shows an LCD module connected to an 82(C)55, using an 8-bit bidirectional
interface. The interface uses Port A and three bits of Port C on an 8255. You can use any of
the 8255's port bits, if you write your program to match.

On the LCD module, pins 1-3 connect to ground, +5V, and a contrast potentiometer. For
maximum contrast, connect pin 3 directly to ground. Pins 4-6 are the control signalsfor the
L CD module. These connect to three outputs on Port C. The eight data bits, pins 7-14 on
the LCD module, connect to Port A.

Listing 8-4 isa BASIC-52 program that initializes a 2-line display and writes LINE 1 and
LINE 2 to the matching lines.

I nitializingthemodule. On power up, theL CD module must initialize properly. If power-up
is clean, with the supply voltage rising from 0.2V to 4.5V in 10 milliseconds or less, the
module initializes automatically. But, if power-up doesn't meet this requirement, your
program has to provide the initialization routine. It's a good idea to aways include an
initialization routine in your program, since it does no harm, and if the module doesn’t
initialize properly, it won't respond correctly or at all.

Table 8-3 summarizes the initialization procedure. In short, the module must first receive
three identical commands selecting an 8-bit interface. BASIC-52 easily provides the
necessary delays between the commands. To begin the initializing, you must send the
instruction to select an 8-bit interface, even if your interface is four bits.

Once this is done, the instructions for Function Set, Display On, Display Clear, and Entry
Mode Set tell the controller the configuration you desire. The automatic power-on initiali-
zation routineturnsthe display off, soif you useit, you haveto turn the display on by writing
0Ch to the instruction register. When initializing is complete, you can control the display as
you wish, though you can’'t change the number of display lines unless you reinitialize from
the beginning.

Listing 8-4 has two subroutines, one for writing charactersto the display and onefor writing

instructions. To write a character, set D equal to the character’s code, and call subroutine
800, which setsRS, writesthe character to the display, and toggles E. To write an instruction,

The Microcontroller Idea Book 145

Chapter 8

Listing 8-4 (page 1 of 2). Initializes a 2-line LCD module and displays a
message on each line.

10 REM address of 8255, Port A
20 A=0FCO00H
30 REM address of 8255, Port C

40 C=A+2
50 REM address of 8255, Control port
60 X=A+3

70 REM Control word for Enable (PC.5)
80 E=0AH

90 REM Control word for RW (PC.6)

100 Rw=0CH

110 REM Control word for RS (PC.4)

120 RS=8

130 REM Initialize LCD module

140 REM initial wvalues

150 XBY(X)=80H: REM Ports A,B,&C are outputs
160 XBY(X)=E : REM E=1

170 XBY(X)=RW : REM RW=1

180 XBY(X)=RS : REM RS=1

190 REM function set: 8-bit interface, 3 times
200 REM toggle E after each instruction

210 XBY (A)=30H
220 XBY (X)=E+1:XBY (X)=E
230 XBY(A)=30H
240 XBY (X)=E+1:XBY (X)=E
250 XBY(A)=30H
260 XBY (X)=E+1:XBY (X)=E

270 REM function set to match module
280 XBY(A)=38H

290 XBY (X)=E+1:XBY (X)=E
300 REM display on

310 XBY(A)=0CH

320 XBY (X)=E+1:XBY (X)=E
330 REM clear display
340 XBY(A)=01H

350 XBY (X)=E+1:XBY (X)=E
360 REM entry mode set
370 XBY(A)=06H

380 XBY (X)=E+1:XBY (X)=E

146 The Microcontroller Idea Book

Displays

Listing 8-4 (page 2 0f 2).

390 REM display “LINE 1", ”“LINE 2"
400 D=ASC(L) :GOSUB 800

410 D=ASC(I):GOSUB 800

420 D=ASC(N) :GOSUB 800

430 D=ASC(E) :GOSUB 800

440 D=20H:GOSUB 800

450 D=ASC(1) :GOSUB 800

460 I=0COH

470 GOSUB 900

480 D=ASC(L) :GOSUB 800

490 D=ASC(I):GOSUB 800

500 D=ASC(N) :GOSUB 800
(

510 D=ASC(E) :GOSUB 800
520 D=20H:GOSUB 800
530 D=ASC(2) :GOSUB 800
600 END

790 REM write data to the display
800 XBY (X)=RS+1

810 XBY (X)=RW

820 XBY(A)=D

830 XBY(X)=E+1:XBY (X)=E

840 RETURN

890 REM write an instruction to the display
900 XBY (X)=RS

910 XBY(A)=I

920 XBY(X)=E+1:XBY(X)=E

930 RETURN

The Microcontroller Idea Book 147

Chapter 8

Table 8-3. Initialization procedure for LCD modules using HD44780
controller.

Power on

Wait 15 milliseconds after V+ = 4.5V
Function set = 30h

Wait 4.1 milliseconds

Function set = 30h

Wait 100 microseconds

Function set = 30h

Function set to match display module
Display on

Display clear

Entry mode set

set | equal to theinstruction and call subroutine 900, which clears RS, writes the instruction
to the display, and togglesE.

Using the example program as a model, you can experiment with your own messages by
adapting the code in lines 400-530.

Listing 8-5 is another test program that displays a prompt on the host’s screen and then
displays the character you type at the keyboard both on the host’s screen and on the LCD
module. To usethis program, you must add lines 10 through 380 of Listing 8-4 to initialize
the module and variables.

The 4-bit Interface

The HD44780's 4-bit datainterface can be convenient if you don’t have alot of port bitsto
spare. The minimum interface requires just 6 outputs, to D4-D7, RS, and E. The drawback is
that the 4-bit interface is slower in operation and more complicated to program.

To send aninstruction using a4-bit interface, you send half at atime over D4-D7, along with
the appropriate RS and R/W signals. D0-D3 are unused. For example, with an 8-bit interface,
writing Z (5Ah) to the display requires the following operations:

clear RW

set RS

write 5Ah to DO-D7
bring E high, then low

148 The Microcontroller Idea Book

Displays

Listing 8-5. Displays key presses on the host computer’s screen and on an

LCD module.

1 REM reserve space for 1 string variable,

2 REM 1 character in length

3 STRING 3,1

4 REM You must add lines 10 through 380 of listing 8-4
5 REM to this program

400 Z=0

410 DO

420 INPUT “Press a key: ”,$(0)

430 PRINT $(0)

440 REM reset display after 8 characters

450 IF Z=8 THEN Z=0:RW=0:I=1:GOSUB 900

460 REM keep track of how many characters are displayed
470 7Z=72+1

480 REM display the character matching the key press
490 D=ASC($(0),1):GOSUB 800

500 WHILE 1=1

600 END

790 REM write data to the display

800 XBY (X)=RS+1

810 XBY (X)=RW

820 XBY(A)=D

830 XBY(X)=E+1:XBY (X)=E

840 RETURN

890 REM write an instruction to the display

900 XBY (X)=RS

910 XBY(A)=I

920 XBY(X)=E+1:XBY (X)=E

930 RETURN

The Microcontroller Idea Book 149

Chapter 8

Listing 8-6 (page 1 of 2).

Creates and displays a custom character

(upside-down question mark) on an LCD module.

1

2

400
401
402
403
404
405
406
407
408

410
420
430
440
450
460
470
480
490
500

510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670

150

REM custom character number

CC=0
XBY (X) =RS
XBY (X) =RW

REM display clear

XBY (A)=1

XBY (X)=E+1:XBY (X) =E
REM set CG RAM address to 0

XBY (A)=40H

XBY (X)=E+1:XBY (X) =E

REM store R1-R8 in CG RAM

D=(CC) +R1
GOSUB 800
D=(CC) +R2
GOSUB 800
D= (CC) +R3
GOSUB 800
D=(CC)+R4
GOSUB 800
D=(CC) +R5
GOSUB 800
D= (CC) +R6
GOSUB 800
D= (CC) +R7
GOSUB 800
D= (CC) +R8
GOSUB 800

REM You must add lines 5-380 from Listing 8-4 to this
REM program.

REM R1-R8 store row patterns for custom character
R1=4
R2=0
R3=4
R4=8
R5=10H
R6=11H
R7=0BH
R8=0

The Microcontroller Idea Book

Displays

Listing 8-6 (page 2 of 2).

680 XBY (X)=RS
690 XBY (X)=RW

700 REM set DD RAM address to O

710 XBY (A)=80H

720 XBY (X)=E+1:XBY (X) =E

730 XBY (X)=RS+1

740 REM write custom character 0 to display
750 XBY(A)=0

760 XBY (X)=E+1:XBY (X)=E

770 END

790 REM write data to display
800 XBY (X)=RS+1

805 XBY (X)=RW

810 XBY(A)=D

820 XBY (X)=E+1:XBY(X)=E

840 RETURN

890 REM write an instruction to the display
900 XBY (X)=RS

910 XBY(A)=I

920 XBY(X)=E+1:XBY(X)=E

930 RETURN

With a 4-bit interface, you have two extra steps:

clear RW

set RS

write 5h to D4-D7
bring E high, then low
write OAh to D4-D7
bring E high, then low

Custom Characters

If the 192 characters provided in the CG ROM aren’t enough, you can create your own. To
design acharacter, draw a5 x 7 matrix and fill it with 1swhere you want dots, and Oswhere
you want nothing. Figure 8-10illustrates, with an example of an upside-down question mark
for Spanish-language messages. Listing 8-6 creates the character and stores and displaysit.

The Microcontroller Idea Book 151

Chapter 8

CUSTOM DOT BIT HEX ROW
CHARACTER PATTERN VALUES VALUES #
© oomond 00100 04]
ooood 00000 00 |

gomod 00100 04 2

Oomoof 01000 08 3

BOO0O0 | 0000 10 4

mOOON | 000 | I 5

ONENR[0] 01110 OE 6

ooood 00000 00 7

Figure 8-10. You can create custom characters with the HD44780 controller.
The CG RAM stores the bit values for each row in the character.

For your own designs, change the values of R1-R8 in lines 401-408 to match the symbol
you want.

Mounting Displays in an Enclosure

Mounting adisplay in an enclosurefor afinished project usually involves cutting or drilling
the enclosure and wiring the display to the control circuits.

For individual LEDSs, you can buy inexpensive mounting rings, and drill matching holesin
the enclosure’'s front panel.

Seven-segment modules often mount on separate circuit boards that fit over an opening cut
into the enclosure. For amorefinished appearance, you can buy bezels with matching sheets
of clear or tinted plastic to cover the displays and mounting hole.

M ost character-based L CD modul eshave amounting holein each corner of thecircuit board.
You'll need to drill matching holes in the enclosure, and cut a hole for the display to show
through. Some displays have aribbon cable attached; others have 14 holeson 0.1" centers,
to which you can solder aribbon cable or a header into which a cable plugs.

Be sure to mount your displays so they will be visible from the expected viewing angle. If
necessary, tilt the display slightly in its mounting.

152 The Microcontroller Idea Book

Using Sensors to Detect and Measure

9

Using Sensors to Detect and
Measure

With your 8052-BASIC system and some sensors, you can detect and measure properties
such as temperature, light, chemical composition, motion, and more. This chapter focuses
on how to use sensorsin an 8052-BASIC or other microcontroller system.

Sensor Basics

A sensor isadevicethat respondsto a physical property or condition. Other termsfor sensor
are detector and transducer. Sensors enable a circuit to learn about the world outside of
itself, much as humans use the senses of sight, hearing, touch, smell, and taste.

A sensor may respond in any of a number of ways. For example, litmus paper is a sensor
that responds to acidity by changing color. For interfacing to the 8052-BASIC, we're
interested in sensors that respond electrically, by varying in voltage, current, or resistance,
since these are easily interfaced to electronic circuits.

One obvious use for sensors is in environmental monitoring, including detecting and
measuring temperature, light, wind speed and direction, humidity, and so on. But all kinds
of electronic devicesuse sensors, even when sensing isn’t the primary purpose. For example,
computer printers have sensors that detect when the printer is out of paper. Many cameras

The Microcontroller Idea Book 153

Chapter 9

can sense light level and distance. And modern automobiles contain all kinds of sensors,
including ones to measure engine temperature, composition of exhaust emissions, ail
pressure, engine speed, and whether or not the seatbelts are fastened.

You can find asensor to detect and measure just about any property. Some sensorsarereadily
available from suppliers of other electronic components. These include photodiodes and
solar cells, which respond to light, and semiconductors that respond to changes in tempera-
ture.

Surplus catal ogs sometimes have good deals on sensors from failed or obsol ete products—
for example, dollar-bill sensors from vending machines and motion detectors from security
systems.

Sometimes you can make your own sensors from everyday materials. The conductive foam
commonly used to hold CMOS components can double as a smple pressure sensor, since
itstop-to-bottom resistance decreases asthefoam is pressed. A popular homemade moisture
detector isa printed-circuit board with two interleaved but untouching copper traces. When
the board is wet, water shorts the traces together and changes the resistance between them
from very high to afew hundred ohms.

Some projects call for a specialized sensor that you just won't find in the usual sources. A
good resource is the Sensors Buyer’s Guide, published annually by Sensors magazine. The
guide lists over 1200 companies involved with sensors, and indexes them according to
property sensed, technology used, manufacturer, and related products and services. From
thelist of properties sensed, you can select the category that interests you and consult alist
of companiesthat offer productsin that area. Most companies are happy to provide product
information and applications hints.

Choosing Sensors

To pick the right sensor for ajob, you first need to specify what you want the sensor to do.
Below are some of the questions to ask about your desired sensor. The example answers
describe a temperature sensor intended for use in a controller used in processing photo-
graphic film:

e What property do | want to measure? (temperature)

¢ What range of inputs do | need to measure? (60-110 degrees Fahrenheit)

¢ What resolution and accuracy do | need? (accurate to within 0.5 degree Fahrenheit)

e How fast must it respond to input changes? (quick response not critical for this
application)

¢ What kind of output do | need (analog, digital, voltage, current,...)? (8-bit digital output
would be ideal, but analog voltage or current output is OK)

154 The Microcontroller Idea Book

Using Sensors to Detect and Measure

¢ What power supplies are available to power the sensor? (+12V, +5V)

The answers to these questions will help you narrow your choices as you research what's
available.

On/off Sensors

Sometimes, all you need to detect is the presence or absence of the sensed property. Some
simplesensors act like switches, with alow resistancein the presence of the sensed property,
and a high resistance in its absence.

There are many types of sensorsthat you can usein this way. A magnetic proximity sensor
responds to the physical separation of the items connected to each of the switch elements.
A vibration sensor responds to rapid motion. Both of these are often marketed as home-se-
curity devicesfor use on doorsor windows, but you might come up with other usesfor them.
Another exampleisamercury tilt switch, which usesaball of liquid mercury asaconductor.
The switch contacts open or close when the switch tilts and the mercury rolls to the opposite
end of the switch. Figure 9-1 illustrates.

Figure 9-2 shows two ways to detect the state of on/off sensors like these.

Figure 9-2A isan unlatched input. When the resi stance across the sensor is high, the pull-up
resistor brings the input voltage high. When the sensor’s resistance is low, the input goes
low.

You can connect thiscircuit to any unused pin on aninput port. If you usethe 8052-BASIC's
INT1 input, you can use an ONEX1 statement to trigger a subroutine whenever the sensor
detects the property in question. If you use an ordinary port input, reading the port bit will
tell you the current state of the sensor.

In Figure 9-2B, when the sensor switchesfrom highto low resistance, a74L S73 XK flip-flop
stores the information as a high Q output, which your program can read at itsleisure. After
reading theinput, strobing the CLR input low bringsQlow again, until the next sensing event.
Theflip-flop “remembers’ past events, so you don’'t have to detect or respond to events as

they happen.

MERCURY
TILT
SWITCH

Figure 9-1. The tilt, or physical angle, of the mercury switch determines
which of its three terminals connect.

The Microcontroller Idea Book 155

Chapter 9

+
w
<

10K

(A) +5Y
10K
ANY INPUT PORT
OR INTERRUPT PIN t
L - opEN NORMALLY OPEN
Lo OPEN S SWITCH/SENSOR
(TILT, VIBRATION,
LIGHT PROXIMITY.
ETC.)
(B) 741573
FLIP-FLOP
ANY INPUT PORT PINF——12|q JL4
K%_
18y H
TR
2
1r

ANY OUTPUT PORT PIN

PIN

STROBE PIN 2 LOW TO CLEAR FLIP-FLOP
AND WAIT FOR NEXT SWITCH CLOSURE.

1

NORMALLY OPEN
SWITCH/SENSOR

(TILT, VIBRATION,
LIGHT, PROXIMITY,
ETC.)

L

12 GOES HIGH WHEN SWITCH CONTACTS CLOSE.

Figure 9-2. Two ways to read the state of a normally open switch/sensor: (A)

basic input, (B) latched input.

Listing 9-1 assumes that in Figure 9-1B, the Q output connects to bit O of an input port at
EO00N, and the CLR input connects to bit 0 of an output port at E400h.The program clears
the flip-flop, then reads the input port continuoudy until the bit in question goes high. It
then displays a message, clears the flip-flop, and returns to the main program.

Analog Sensors

The above sensors have just two states: on and off, or open and closed. This makes them
easy to usein digital circuits, which recognize only two logic states.

156

The Microcontroller Idea Book

Using Sensors to Detect and Measure

Listing 9-1. Reads and clears a flip-flop output connected to an input port pin.

10 REM clear flip-flop

20 XBY (0E400H) =0

30 XBY (0E400H) =1

40 DO

50 REM read port

60 A=XBY (OEQO0O0H)

70 REM see if bit 0 is set
80 IF A.AND.1=1 THEN GOSUB 200
90 WHILE 1=1

100 END

200 PRINT “vibration alarm”
210 REM clear flip-flop

220 XBY(0E400H) =0

230 XBY(0OE400H)=1

240 RETI

Many sensors have anal og outputs, however. They vary continuously in responseto changes
in the properties they sense. For example, the resistance of a Cadmium-sulfide (CdS)
photocell varies with theintensity of light hitting it. If you want to use an analog sensor like
this in an 8052-BASIC system, you need to add some components to convert the analog
signal to digital.

A comparator provides away to detect a specific analog voltage. Figure 9-3 shows how to
use a comparator to detect a specific light level on a photocell.

A comparator isa specia form of op amp with analog inputs, but adigital output. In Figure
9-3, pin 4isareference voltage, and pin 5 is the input being sensed. When the sensed input
islower than the reference, the comparator’s output islow. When the sensed input is higher
than the reference, the comparator’s output is high.

R1 and the photocell form a voltage divider. As the light intensity hitting the photocell
increases, its resistance decreases and pin 5's voltage rises. To detect a specific light level,
adjust R2 sothat VOUT switchesfromlow to highwhenthelight reachesthe desired intensity.
You can read the logic state of VOUT at any input port pin.

R4 is apull-up resistor for the LM 339's open-collector output. R3 adds a small amount of

hysteresis, which keeps the output from oscillating when the input is near the switching
voltage.

The Microcontroller Idea Book 157

Chapter 9

0,
CADMIUM- g
SULFIDE
PHOTOCELL ———> VOUT
©-DARK
R — =L IGHT
100K 1/4 LM339
= COMPARATOR
R3
M

ADJUST R2 SO VOUT SWITCHES AT DESIRED
LIGHT LEVEL.

Figure 9-3. The comparator 's output switches at the light level determined

You can use the same basic circuit with other sensors that vary in resistance. Replace the
photocell with your sensor, and adjust R2 for the switching level you want. Connect VOUT
to any input port pins.

Measuring Analog Signals

Sometimes you need something more sophisticated than a simple level detector. An
anaog-to-digital converter (ADC) enables you to measure the precise value of an analog
voltage.

Some versions of the 8052 microcontroller, including Philips' 80C562, include an on-chip
ADC, but the 8052-BASIC doesn’'t have thisfeature, so you haveto add it externally. There
are dozens of converters available, with varying resolution, accuracy, speed, method of
conversion, number of analog inputs, and so on. Another optionisto usean integrated sensor
that contains itsown ADC and has adigital output.

National Semiconductor’s ADC0848 is an easy-to-use, low-cost, general-purpose, eight-
channel ADC. In many ways, the ADC0848 is similar to National’s long-popular
ADCO0808/9 A/D converters, but with some advantages. The ADC0848 does not require an
external clock; itscontrol signalsinterfacedirectly to many microcontrollers; andit isfaster,
with atypical conversion time of 30 microseconds.

National’s data sheet for the ADC0848 has complete specifications, applications informa-
tion, and example circuits. You'll want a copy of the data sheet if you plan to use the chip.

158 The Microcontroller Idea Book

Using Sensors to Detect and Measure

ADC0848
+5y A/D CONVERTER
o
24|,
LDVReF cn e
CH2
-READ—LRD cs | ANAE9E
-WR1TE 22R chal>_ | @-5v
DATA BUS CoooH—CS chs o
DO-D7 7
— o1 — CHB F—
2LNTR a8
9
cHe— —
—L0___20/pgp/Ma0
DL 199551 /MAl
D2 18/ppy/MA2 A
035 17pg3/MA3 __T_Ej® -
D4 16/pg4/Ma4 o L2
b5 15 AGND
DBS
D6 14 <7
DB6 (5

MA4 MA3 MODE

X 0 DIFFERENTIAL

0 | SINGLE-ENDED
| | PSEUDO-DIFFERENTIAL

X = DON'T CARE

SELECT CHANNEL AT MAQ-MA?2

Figure 9-4. The ADCO0848 interfaces easily to an 8052-BASIC system, and can
measure up to eight analog inputs.

Figure 9-4 shows an ADC0848 interfaced to Chapter 3's 8052-BASIC system. The connec-
tions are similar to those used for RAM. WRITE and READ drive the converter’s WR and RD
inputs. The converter is shown addressed at CO00h, but you can use any unused chip-select

The Microcontroller Idea Book 159

Chapter 9

line. Digital outputs DB0-DB7 connect to the data bus (D0-D7). DB0-DB4 also function as
control inputs MAO-MA4.

Up to eight analog inputs can connect to pins 2-9 on the ADC0848. The voltage at VREF
determines the converter’s full-scale voltage, which is the input that results in an output of
11111111, or FFh. For maximum range, connect VREF to the +5V supply or to amore precise
5-volt reference like an LM 336-5.0 reference diode. The anal og inputs can then range from
0 to +5 valts.

Adjusting the Range

If your sensor’s output is much less than 5 volts, you can increase the resolution of the
converter by connecting VREF to avoltage dightly larger than the highest voltage you expect
to measure.

To illustrate, consider a sensor whose output ranges from 0 to 0.5 volt. The 8-bit digital
output of the converter represents a number from 0 to 255. If VREF is 5 valts, each count
equals 5/255, or 19.6 millivolts. A 0.2-volt analog input results in a count of 10, while a
0.5-volt input results in a count of 26. If your input goes no higher than 0.5 volt, your count
will never go higher than 26, and the measured values will be accurate only to within 20
millivolts, or /255 of full-scale.

But if you adjust VREF down to 0.5 volts, each count now equals 0.5/255, or 2 millivolts. A
0.2-volt input gives a count of 102, a 0.5-volt input gives a count of 255, and the measured
values can be accurate to within 2 millivolts.

However, if you decrease VREF as described above, you also increase the converter’s
senditivity to noise. With VREF at 5 volts, a20-millivolt noise spikewill cause at most a1-bit
error in the output. If you decrease VREF to 0.5 volt, the same spike can cause an error of
10 hits, since each bit now represents 2 millivolts, not 20.

Minimizing Noise

Therapid switching of digital circuits can cause voltage spikesin theground lines, and these
can cause errors in analog measurements. Good routing of ground wires or pc-board traces
can minimize noise in circuits that mix analog and digital circuits.

To minimize noise, provide separate ground paths for analog and digital signals. In Figure
9-4, thismeans that AGND and any ground connections related to the analog inputs or VREF
should be wired together, but kept separate from the ground connections for the digital
circuits, including logic chips, the 8052-BASIC, and memory chips. The two grounds are
tied together at one place only, as near to the power supply as possible. The schematic uses

160 The Microcontroller Idea Book

Using Sensors to Detect and Measure

different ground symbols for the two ground paths. Also be sure to include decoupling
capacitors at pins 10 and 12.

Measuring Modes

To alow for different circuit requirements, the ADC0848 offers a choice of three software-
selectable modes of operation: single-ended, differential, and pseudo-differential. Figure
9-5illustrates.

In single-ended mode, each analog input is referenced to AGND. This is the simplest mode
and will work fine for many applications.

Listing 9-2 causes the ADC to convert each of the eight channelsin turn and displays the
results on the host computer. For testing the circuits, you can connect a the wiper of a
potentiometer to each channel, with the other two leads connectingto AGND and VREF. Verify
that the readings for each channel vary from O to 255 as you vary the input voltage.

The other modes are useful for more critical measurements where you need to reject
background noise or offset voltages.

In differential mode, each channel is paired with an adjacent one, with the voltage on one
channel referenced to the voltage on the other.

For example, you could connect an output from a sensor to channel 2 and aground or other
reference from that sensor to channel 1. With differential mode selected, channel 1 will read
the difference between channel 1's and channel 2's voltage. This mode cancels out errors
due to noise that is common to both channels in the pair, such as 60-cycle power-line
interference. However,because each channel uses two analog inputs, this mode limits you
to four channels.

The third mode of operation is pseudo-differential. In this mode, channels 1-7 are all
referenced to channel 8. This allows you to make 7 measurements, all with the same
reference. This mode is useful if you are have multiple sensors in the same location. Also,
if you connect channel 8 to a voltage greater than AGND, the converter’s range will shift to
match, with a0 output occurring when an input equals channel 8's voltage.

Reading the ADC

To begin aconversion on the ADC0848, the 8052-BA SI C writesto the converter indicating
the desired channel and mode. Bits 0-2 specify the channel (000=1, 001=2, 010=3, etc.),
and bits 3-4 specify the mode of operation (00=differential, 01=single-ended, 11=pseudo
differential). So, for example, in Figure 9-4’s circuit, to begin a single-ended conversion at
channel 5, you would write 0000 1101, or ODh, to the converter’s address.

The Microcontroller Idea Book 161

Chapter 9

SINGLE-ENDED

CH I
ADC0848 Chp
CH3
CH4
CH5
CH6
CH7

CH8

AGND

+ SENSOR |

+

SENSOR 2

+

SENSOR 3

+

SENSOR 4

+

SENSOR 5

+

SENSOR 6

+

SENSOR 7

+

SENSOR 8

DIFFERENTIAL

CH I
ADC0O848 CHD
CH3
CH4
CH5
CH6
CH7

CH8

+

SENSOR |

+

SENSOR 2

SENSOR 3

+

+

SENSOR 4

I [R I S R B

T]

PSEUDO-DIFFERENTIAL

CH I
ADC0848 Chp
CH3
CH4
CH5
CH6
CH7

CH8

SENSOR |

+

+

SENSOR 2

+

SENSOR 3

+

SENSOR 4

SENSOR 5

+

+

SENSOR 6

T]

+

SENSOR 7

Figure 9-5. Measurement modes available with the ADC0848 are
single-ended (A), differential (B), and pseudodifferential (C).

162 The Microcontroller Idea Book

Using Sensors to Detect and Measure

Listing 9-2. Displays measurements of channels 1 through 8 on the
ADCO0848.

10 REM use single-ended mode
20 REM set A to address of ADC
30 A=0C000H

40 FOR I=1 TO 8

50 XBY (A)=8+I-1

60 PRINT “Channel ”,I," = %, : PHO. XBY(A)
70 NEXT T
80 END

Writing to the converter causesthe conversion to begin automatically. When the conversion
is complete, aread operation to the converter’s address causes the the converted value to
appear at DB0-DB7, where the 8052-BASIC readsiit.

The INTR pin indicates when a conversion is complete, and can be used to trigger a read
operation. INTR is low when a conversion has occurred that has not yet been read. It goes
high after aread and remains high until the next conversioniscompleted. BASIC-52isslow
enough that you don’t have to worry about waiting the maximum 60 microseconds between
requesting a conversion and reading the result, so you can ignore INTR and read the result
any time after awrite.

Packaging Options

The ADC0848 comes in a 24-pin “skinny” DIP, with the pin rows spaced 0.3" apart as on
a 14-pin DIP. Sockets of this size, especially wire-wrap, can be hard to find, but in a pinch
you can place a 16-pin and 8-pin socket end to end. If you need only four analog inputs, use
the ADC0844, in a 20-pin skinny DIP.

Sensor Examples
Now let’s look acouple of examples of sensors that you can connect to the ADC0848.
Temperature

Thefirstisan LM 34 temperature sensor. Unlike many other temperature sensors, the LM 34
requires no calibration. Itsoutput isasimple 10 millivolts per degree Fahrenheit. AsFigure
9-6 shows, it's available in severa versions. The ones with a narrower range or lower
resolution are cheaper. If you prefer Celsius readings, use the LM 35.

Figure 9-7 showshow to usean LM 385-2.5 voltagereferenceto set the ADC' SVREF t0 2.5V.
The converter then can measure temperatures from 0O to 250 degrees, and each bit in the
ADCO0848's output represents a 9.8 millivolt change in the sensor’s output.

The Microcontroller Idea Book 163

Chapter 9

+5V

LM34/35
V+ VOUT GND
O @] O

Ve |OmV /DEGREE

(CONNECT TO
LM34735 VOUT A/D CONVERTER'S

ANALOG INPUT.

GND
Y&' BOTTOM VIEW
TEMPERATURE SENSOR

LM34/35 TEMPERATURE SENSORS

DEVICE | ACCURACY RANGE SCALE
LM34 +1.6 -50 +300 °F
LM34A +0.8 -50 +300 °F
LM34C +1.6 -40 +230 °F
LM34D +1.6 +32 +212 °F
LM35 +0.4 -55 +150 °C
LM35A +0.8 -55 +150 °C
LM35C +0.8 -40 +110 °C
LM35D +0.8 O +100 °C

Figure 9-6. The LM34 and LM35 temperature sensors have outputs of 10
millivolts per degree, and need no calibration.

Listing 9-3. Measures and displays temperature reading at ADC0848’s
Channel 2.

10 REM set A to address of ADC

20 A=0C000H

30 REM use single-ended mode

40 REM set C to channel to read (1-8)
50 Cc=2

60 XBY (A)=8+C-1

70 VREF=2.5

80 B=XBY (A)

90 T=INT (VREF*B*100/255+.5)

100 PRINT “Temperature = ”,T

110 PRINT “Press any key to take another measurement”
120 D=GET : IF D=0 THEN GOTO 120

130 GOTO 60

140 END

164 The Microcontroller Idea Book

Using Sensors to Detect and Measure

SV LM385-1.2
LM385-2.5

VREF (1.2V OR 2.5V)

LM385-1.2
R
EM385-2.5 BOTTOM VIEW
+5Y
R LM385
I K L.]
#— VREF (2V)
R2 Eﬁ$ﬁ
Vi 560K
FEED
LM385 BACK BOTTOM VIEW
GND R3
330K CHOOSE R2 AND R3 FOR
J; DESIRED VREF:
) R3]
ADJUSTABLE VOLTAGE REFERENCE VREF "24[R2 |

Figure 9-7. The LM385 series of voltage references includes 1.2V, 2.5V,
and an adjustable version.

Listing 9-3 assumes that an LM 34 connectsto CH2 on the ADC0848, and that VREF iS2.5V.
On request, it displays the current temperature.

For asmaller range, create a 1.2V reference with an LM385-1.2 and change line 70 in the
program to match. Another option is the LM385 adjustable reference, which contains a
reference diode and feedback amplifier. With the addition of avoltage source and resistors
in avoltage divider, you can set the LM 385’s output to the reference voltage you need. Use
the formula shown to vary the resistors for different outputs.

Solar Energy

Figure 9-8 showsanother sensor application, asolar cell that generatesacurrent proportional
to the intensity of thelight hitting the cell. The output of the solar cell in the example varies

The Microcontroller Idea Book 165

Chapter 9

RS
1 0K
[/2 7
LF353 VouT
+
W
SOLAR |
CELL

SOLAR CELL OUTPUT = 300mA IN FULL SUN.
VOUT VARIES WITH LIGHT INTENSITY

LIGHT LEVEL | VOUT
DARK 0
FULL SUN 4.75V

Figure 9-8. vour varies with the light intensity, and output current, of the solar
cell.

from 0 in darkness to 300 milliamperes in full sun. The voltage across the cell is about 0.5
volt.

An LF353 dual op amp convertsthe solar cell’s current into avoltage that the ADC0848 can
measure. Most of the solar cell’s current flows through the 1-ohm resistor to ground. Since
the solar cell’s voltage is only about 0.5 volt, the power dissipated by the 1-ohm resistor is
only about 0.15 watt in full sun.

About one percent of the solar cell’s output flows through the 100-ohm resistor. This same
current flows through the 1.6K resistor, with the result that the voltage at pin 1 of the LF353
variesfrom O to about -4.75V. Thisvoltage is proportional to the intensity of thelight hitting
the solar cell. The second op amp is an inverter that converts the voltage to positive levels
that the ADC0848 can measure.

Listing 9-4 assumes that pin 7 of the LF353 connects to Channel 8 of the ADC0848. On
request, the program converts the analog input and displays the resullt.

166 The Microcontroller Idea Book

Using Sensors to Detect and Measure

Listing 9-4. Measures and displays solar energy detected by solar-cell
circuits at Channel 8 of ADC0848.

10 REM set A to address of ADC

20 A=0C000H

30 REM set C to channel to read (1-8)

40 C=8

50 REM use single-ended mode, select channel, start convert
60 XBY (A)=8+C-1

70 REM FS=full-scale voltage (5V)/full-sun output (4.75V)
80 FS=1.05

90 B=XBY (A)

100 T=INT(FS*B*100/255+.5)

110 PRINT “Solar energy = ",T," percent of full sun"
120 PRINT “press any key to take another measurement”
130 D=GET : IF D=0 THEN GOTO 130

140 GOTO 60

150 END

Level Translating

As you can see, not every sensor has an output that can connect directly to the ADC0848's
inputs. A sensor’s output may vary from-2to -1V, from-0.5to +0.5V, or from-12 to +12V.
Inall of these cases, you need to shift the signal levels and sometimes adjust the signal range
to be compatible with a converter that requires inputs between 0 and 5 volts.

Figure 9-9 shows a general-purpose circuit that can amplify or reduce input levels, and can
alsoraiseor lower theentiresignal by adding or subtracting avoltage. Separate, independent
adjustments control the gain and offset. The circuit is aseries of three op amps. abuffer, a
level shifter, and an amplifier. The example circuit uses three of the devices in an LF347
quad JFET-input op amp. The LF347 hasfast response and high input impedance. You may
use a different op amp if you prefer.

Thefirst op amp isa noninverting amplifier whose output at pin 1 equals VIN. The op amp
presents a high-impedance input to VIN, to minimize loading effects.

The second op amp isan inverting summing amplifier that shifts pin 1'svoltage up or down
asR5isadjusted. Adjusting R5 raises and lowersthe voltage at pin 7, but the signal’s shape
and peak-to-peak amplitude remain constant.

The third op amp is an inverting amplifier whose gain is adjusted by R4. This amplifier
increases or decreases the peak-to-peak amplitude of its input.

The Microcontroller Idea Book 167

Chapter 9

BUFFER

EXAMPLE USE:

12V

VIN

- 12V

R
IOK

RS

IOOK

OFFSET
ADJUST

LEVEL SHIFTER AMPLIFIER/ATTENUATOR

R2
IOK

GAIN
ADJUST
R4
00K
R3 9
IOK
/ -—/\/\/\rl—‘lo 8 —O VOUT

+5Y
vouT OV 1

Figure 9-9. With this circuit, you can adjust the level and amplitude of an

analog signal so that it varies from 0O to +5V.

As an example of how to use the circuit, if VIN varies from +12V to -12V, adjust R4 for a
+2.5-volt swing at VOUT, then adjust R5 to raise VOUT to achieve the desired 0-to-+5V

swing.

Resistor R4 can increase the gain as well as decrease it. If you need to shift the signal level
down instead of up, connect R5 to +15V instead of -15V. If you don’t need level shifting,
you can remove R5 and connect pin 6 only to R1 and R2.

168

The Microcontroller Idea Book

Using Sensors to Detect and Measure

Choosing a Converter

The ADC0848 isagood, general-purpose chip, but you may want tolook at other converters,
depending on your application. Below are some things to consider when choosing an A/D
converter. Example answers describe the ADC0848, using information from its data sheet:

e What is the analog input range? (OV to V+)

¢ How many analog channels are there? (8)

¢ What is the converter’ s resolution? (8 bits)

e How fast is the conversion? (30 microseconds typical, 60 microseceonds maximum)

e How accurate is the conversion? (+.1 LSB (least significant bit), 1/2 LSB version
available)

¢ What are the power-supply requirements and power consumption? (+4.5 to +6V, 15
milliwatts)

¢ What input modes are available? (single-ended, differential, pseudo-differential)

e How is the converter controlled and interfaced? (control signals are WE, OE, CS

¢ Arethere any special features on-chip (sample-and-hold, voltage reference, etc.)? (an
internal clock times the conversions)

e What package types are available? (24-pin 0.3" DIP, 28-lead chip carrier)

Sample and Hold Circuits

An additional component that you may need for rapidly changing analog inputs is a
sample-and-hold circuit. To ensure correct conversions, the analog input must not change
in value while the conversion is taking place.

A sample-and-hold circuit ensures that the analog signal is stable by sampling the signal at
the desired measurement timeand storing it, usually asacharge on acapacitor. The converter
uses this stored signal as the input to be converted.

When do you need a sample-and-hold? The ADC0848 requires 60 microseconds or lessto
convert, so you should get good results with inputs that do not vary more than 1 bit in this
amount of time. When arapidly changing input does require one, sample-and-hold ICslike
the LF398 are available, or you can use a converter like the ADC0820, which has the
sample-and-hold on-chip.

The Microcontroller Idea Book 169

Chapter 9

170 The Microcontroller Idea Book

Clocks and Calendars

10

Clocks and Calendars

Many 8052-BASIC systems can make use of areal-time clock that keeps track of seconds,
minutes, hours, and even days, months, and years. You can usethe clock to trigger operations
at specified intervals, such as every five minutes, hourly, daily, on the first of the month, or
whatever. Or, adatalogger might record the time and date of each measurement it takes, or
the times when it detects selected events.

BASIC-52 includes its own real-time clock that counts in 5-millisecond increments. For
many timing tasks, thisis all you'll need. Another approach is to add a timekeeping chip
that automatically keeps track of time and calendar information. Many clocks perform
functions beyond simple timekeeping, such as generating periodic interrupts or acting as a
watchdog that resets the microprocessor in case of program crashes. Plus, using a separate
timekeeping chip means that you don’'t have to devote any of the 8052-BASIC’s resources
to the task.

This chapter describes how to use both BASIC-52's real-time clock and Dallas Semicon-
ductor’s DS1286 Watchdog Timekeeper chip.

BASIC-52’s Real-time Clock

The 8052-BASIC, like other computers, has a timing crystal or another frequency source
connected to its XTAL pins. In fact, the chip will do nothing at all without thisinput, since
it iswhat clocks instructions into the chip’s CPU for execution. While this clock provides

The Microcontroller Idea Book 171

Chapter 10

an essential timing reference, by itself it doesn’t keep track of real-world time measured in
seconds, minutes, and hours. But if you know the crystal’s frequency, you can measure
seconds by counting the oscillations of the crystal. Thisiswhat BASIC-52’sreal-time clock
does.

A CLOCK1 statement starts the real-time clock, which causes the TIME operator to
increment every 5 milliseconds. Reading the TTME operator tellsyou the number of seconds
that have passed since the clock was enabled. CLOCK0 stops the clock and freezes TTME
at itscurrent value. TIME resets to O when the count reaches 65536 seconds (18 hours, 12.3
minutes), or when the statement TTME=0 executes. If you stop the clock and then then restart
it, TIME will continue counting from where it left off, unless you first reset it to O.

The ONTIME instruction jJumps to a subroutine whenever TIME reaches the value you
specify. Because the ONTIME subroutine is an interrupt routing, you use RETI, not
RETURN, to end it.

Listing 10-1 isaprogram that counts seconds, minutes, and hours, and displays the current
reading once per second. For accurate timekeeping, the XTAL operator must match the
value of your timing crystal.

You can aso use ONTIME to trigger periodic operations. Listing 10-2 is a program that
toggleshit 7 of Port 1 once per second and displaysthelogic state of the bit after each toggle.

Clock Accuracy

Themoreaccurate your timing reference, the more accurate your clock will be. You cantune
the frequency of acrystal dightly by varying the value of one of the capacitors that connects
from the crystal to ground.

Temperature variations will cause acrystal’s frequency to drift. Crystal accuracy israted in
parts per million per degree Celsius (often shortened to ppm). Over time, a crystal rated at
+10 ppm should vary no more than 0.001 percent per degree Celsius, or 0.86 seconds per
day, if the temperature varies no more than +1 degree Celsius. If your clock must be
super-accurate, choose the most stable crystal you can find and and avoid temperature
fluctuations.

You might think that you can get a more accurate real-time clock by adjusting XTAL to
match your crystal’s actual frequency, rather than its rated value. You could measure the
crystal’s frequency with afrequency counter, or experiment by varying the value of XTAL
and monitoring thereal-time clock to find the best match. For example, if your 122Mhz crystal
actualy oscillates at 11.97 Mhz, you could set XTAL equal to 11970000.

172 The Microcontroller Idea Book

Clocks and Calendars

Listing 10-1. Uses BASIC-52's real-time clock to count seconds, minutes,

and hours.

10 REM set XTAL to match your crystal’s frequency
20 XTAL=12000000

30 REM set and initialize clock

40 GOSUB 200

50 REM increment clock variables once per minute
60 DO

70 ONTIME 60,500

80 WHILE 1=1

90 END

200 PRINT “Please enter the current time:”
210 INPUT “AM (0) or PM (1)2 ”,AP

220 INPUT “Hour (1-12)2 ”,H

230 INPUT “Minutes (0-59)? ”,M

240 INPUT “Seconds (0-59)2? ~,S

250 REM initialize clock to current seconds
260 TIME=S

270 REM start clock

280 CLOCK 1

290 RETURN

500 REM increment and display time once per minute
510 REM reset seconds

520 TIME=0

530 REM increment minutes

540 M=M+1

550 IF M=60 THEN GOSUB 700

560 REM display current time

570 PRINT “the time is :”

580 PRINT H, "hours"

590 PRINT M, "minutes"

600 IF AP=0 THEN PRINT “ AM” ELSE PRINT “ PM”
610 RETI

700 REM once/hour timekeeping

710 REM reset minutes

720 M=0

730 REM increment hours

740 H=H+1

750 REM at 12:00, toggle am/pm

760 IF H=12 THEN AP=A

770 REM at 1:00, reset hours

780 IF H=13 THEN H=1

790 RETURN

The Microcontroller Idea Book 173

Chapter 10

Listing 10-2. Toggles a port bit and displays the result.

10 REM toggles Pl.7 once per second
20 TIME=0

30 CLOCK 1

40 DO

50 ONTIME 1,100

60 WHILE 1=1

70 END

100 REM reset time

110 TIME=0

120 REM toggle Port 1, bit 7

130 PORT1=PORT1.XOR.80H

140 PRINT “Port 1, bit 7 = ”, (PORT1.AND.80H)/80H
150 RETI

But in reality, because of the way that BASIC-52 calculates time, small variationsin XTAL
usually do not effect the real-time clock. Although BASIC-52 will store a XTAL value as
precise as 12000001, it uses the same time base for all XTAL values from 11963191 to
12039877. If your crystal frequency iswithin thisrange, small adjustmentsto X TAL won't
make the real-time clock more accurate. The value that controls the time base is stored at
4Ah in internal data memory. At 12 Mhz, it's 64h. If you want to experiment, change the
value of XTAL, then type PHO. DBY (4AH) to find out if the time base has changed.

A Watchdog Timekeeper

Dallas Semiconductor’s DS1286 Watchdog Timekeeper, shown in Figure 10-1, is another
way to keep track of time. The chip is easy to use because it containsits own quartz-crystal
timing reference, plus a lithium cell for backup power. Once you initialize the clock and
calendar and start the oscillator, the clock keeps time for ten years or more, whether or not
an external power source is present. You don’t have to reset the clock every time you power

up.

The DS1286 can be especially useful in battery-powered systems. Sinceit continuesto keep
time when the main power supply is off, you can use its interrupt output to power circuitry
at programmed timesor intervals. For example, by adding circuitsto control apower supply,
the DS1286’s interrupt could trigger a data logger or other instrument to power up a a
programmed time. After taking data or performing other operations, the instrument could
power itself down until the next interrupt from the DS1286. The longer the time between
readings, the greater the power savings.

174 The Microcontroller Idea Book

Clocks and Calendars

CINTERRUPT A OUT TNTACI o/ 28hvcce L5V
~ NCO2 27 OWE -WRITE ENABLE
NO CONNECTION NC O3 26 [0 TNTB/(INTB) INTERRUPT B OUT
NC 4 25[@NC
= >4 BN :|NO CONNECT I ON
A4 6 233 saw SQUARE WAVE oUT
ADDRESS INPUTS A3O7 22 O 0E -OQUTPUT ENABLE
A28 21 [JOPEN PIN MISSING
Al 9 20[OCE -CHIP ENABLE
L A0OIO 19 DQ7
— booO! | 18 1 DQ6
DATA 1/0 DOl I2 |7 ODQ5 DATA 1/0
L 002013 16 DQ4
GROUND GND 14 I50DQ3
DS 1286

WATCHDOG TIMEKEEPER
Figure 10-1. Pinout of the DS1286 Watchdog Timekeeper.

The DS1286 contains a series of registers that store time, date, alarm, and configuration
information. You can read the current time and date from the DS1286 in hundredths of
seconds, seconds, minutes, hours, day of the week, date of the month, and year. Months of
different lengths and even leap years are handled automatically. Clock accuracy is better
than £1 minute per month at 25 degrees Celsius.

Figure 10-2 shows the pin connections for aDS1286 in aBASIC-52 system. To accommo-
date its crystal and power source, the DS1286 a 28-pin encapsulated DIP, just like the one
used by Dallas NVRAMs.

The pinout and wiring are similar to that for static RAM. The chip’s access time is 150
nanoseconds, which iswell within the 8052-BASIC’s timing requirements. The eight data
lines (DQO-DQ7) connect to the data bus. The chip hasjust six addressinputs (A0-A5), which
are all it needs to access its 64 bytes. The clock/calendar uses 14 bytes, and 50 bytes of
nonvolatile RAM are available for any use. The chip is shown addressed at A00Oh, but you
can use any unused chip-enable. The chip’'s WE and OE inputs are driven by RDANY and
WRITE.

The DS1286 has two interrupt outputs, TNTA and INTB. You can program one of these to
toggle or pulse whenever the time and/or day match stored values. The other can generate
an interrupt if the DS1286's watchdog register isn't accessed periodically. You can use this
feature to automatically reset a system if a program crash causes the program to stop

The Microcontroller Idea Book 175

Chapter 10

DATA BUS (DO-D7)

LOW ADDRESS BUS
(AO-A7)
\ DS 1286
AQ O] AO DQO [DO
Al 9 Al DO | | 2 DI
A2 8 I3 D2
A2 DQ2 ———="
A3 7 15 D3
A3 DQ3IF———
A4 6 |6 D4
A4 DQ4 ————"—
A5 5 |7 D5
" Soo|T8 D6
DQ6 ————=~
DQ7 19 D7/
AOOOH %C__E L5y
-WRITE ——WE
ey 22| vec28 T
—
— INTA |4
26 GND
—23 INTB 1
221 saw -

WATCHDOG TIMEKEEPER

Figure 10-2. Wiring diagram for the DS1286 Watchdog Timekeeper in an
8052-BASIC system.

accessing the watchdog register. WhenTPSW (register B, bit 6) is 1, the time-of-day interrupt
ISONINTA, and the watchdog interrupt ison INTB. When TPSW is O, these are reversed, with
thewatchog on TNTA and the time-of-day on INTB. The chip also hasa 1024-Hz square-wave
output.

Table 10-1 details the functions of the DS1286's registers, which store time, date, configu-
ration, and status information. To initialize the clock/calendar, you write the current time
and date into registers 0-2, 4, 6, and 8 through A, then start the clock by clearing EOSC (bit
7 of register 9).

Time and date values are stored in binary-coded decimal (BCD) format. In BCD, a 4-bit
nibbl e represents one decade, and nibbles greater than 9 (1001) are not allowed. Table 10-2
shows numbers expressed in decimal, BCD, and binary. Some values in the DS1286 don't
require afull 8 bits. For example, since the month can go no higher than 12, you need only
5 bitsto store its value.

176 The Microcontroller Idea Book

Clocks and Calendars

Table 10-1. Register functions for the DS1286 Watchdog Timekeeper
Register | Function Bit 7 ‘Bit 6 ‘ Bit 5 ‘Bit 4 Bit 3 ‘Bit 2 ‘ Bit 1 ‘Bit 0
0 Clock 0.1 seconds 0.01 seconds
1 0 10 seconds seconds
2 0 10 minutes minutes
3 Alarm MASK |10 minutes alarm minutes alarm
4 Clock 0 1224 |10hror |10hr hours

AM/PM
5 Alarm MASK |12/24 10hr or |10hr hour alarm
AM/PM
6 Calendar 0 0 0 0 0 days
7 Alarm MASK |0 0 0 0 day alarm
8 Calendar, 0 0 10 date date
9 Oscillator EOSC |ESQW |0 ‘10 mo |months

A 10 years years
B Command TE \m ‘ IBH/LO ‘PU/M WAM ‘TDM ‘WAF ‘TDF
C Watchdog 0.1 seconds 0.01 seconds
D 10 seconds seconds
E-3F User free for any use
Time of Day Alarm Mask Bits
Minutes Hours Day Alarm Frequency
1 1 1 Once per minute
0 1 1 When minutes match
0 0 1 When hours and minutes match
0 0 0 When hours, minutes, and days match
Symbol Function Symbol Function
EOSC Enable Oscillator PU/LVL Pulse/Level Triggered Interrupts
ESQW Enable Square Wave Out WAM Watchdog Alarm Mask
TE Transfer Enable TDM Time-of-day Mask
1PSW Interrupt Switch WAF Watchdog Alarm Flag
IBH/LO Interrupt B High/Low Trigger TDF Time-of-day Flag
The Microcontroller Idea Book 177

Chapter 10

To generate an interrupt at a specific time, you select an alarm frequency by setting or
clearing three mask bits (bit 7 of registers 3, 5, and 7), and storing the desired alarm datain
bits 0-6 of the same registers. Clearing aregister’smask bit means that the DS1286 will use
valuesin that register to determine the alarm frequency. Setting a mask bit means that the
DS1286 will ignore the information in the register. For example, to generate an interrupt at
3:15 daily, you would store the following values:

Register Mask Byte Alarm Data

3 0001 0101 15 minutes

5 0000 0011 3 hours

7 IXXX XXXX days (X=don't care)

Table 10-3. Decimal numbers and their equivalents in binary and
binary-coded decimal. The values 0-9 are identical in BCD and binary.

Decimal Binary-coded Decimal (BCD) Binary

0 0000 0000 0000 0000
1 0000 0001 0000 0001
2 0000 0010 0000 0010
3 0000 0011 0000 0011
4 0000 0100 0000 0100
5 0000 0101 0000 0101
6 0000 0110 0000 0110
7 0000 0111 0000 0111
8 0000 1000 0000 1000
9 0000 1001 0000 1001
10 0001 0000 0000 1010
1 0001 0001 0000 1011
19 0001 1001 0001 0011
20 0010 0000 0001 0100
29 0010 1001 0001 1101
30 0011 0000 0001 1110
99 1001 1001 0110 0011

178 The Microcontroller Idea Book

Clocks and Calendars

If you want an alarm frequency other than daily, hourly, or on the minute, there are acouple
of waysto achieveit. For an darm every 10 minutes, you could generate an interrupt once
per minute and ignore 9 out of 10 interrupts.

If this seemswasteful, you can update the alarm minutes to the next desired value after each
interrupt. Using the example of an interrupt every 10 minutes, you would set the mask bits
for when minutes match (0-1-1), and start out by storing O in register 3, which will cause an
interrupt to occur on the hour. When the interrupt occurs, you would add 10 to register 3 to
schedule the next interrupt for 10 minutes after the hour. By continuing to add 10 to register
3 after each interrupt, and returning to 0 on acount of 60, you end up with an interrupt every
10 minutes.

As Table 10-1 shows, many of the DS1286's registers have multiple functions. In register
9, bits 0-4 store the current month, bit 6 enables the square-wave output, bit 7 enables the
clock, and bit 5 is aways 0. For situations like this, you can create mask bytes and use
BASIC-52's|ogical operators to read and write to selected bits while ignoring other bitsin
a register. For example, assume that you want to store a month in bits 0-4 of the 1286's
register 9, without affecting the settings of bits 5-7.

To do so, follow these steps:

(1) Read the current value of the byte. In our example, with a current month of December,
the clock enabled, and the square wave disabled, register 9 will hold these values:

0101 0010

(2) Create amask byte by setting all bits to be masked, or unchanged, to 1, and clearing the
other bits. To alter only the month’s value, bits 5-7 are masked:

1110 0000
(3) Logically AND the current value with the mask byte, with this result:
0100 0000

(4) Place the new month’s value in bits 0-4 of the byte. To change the month to June (6th
month), logically OR the above byte with this:

0000 0110
which resultsin:

0100 0110

The Microcontroller Idea Book 179

Chapter 10

(5) Save the result in the original location (register 9). Bits 5-7 are unchanged from the
original, while bits 0-4 have been changed from 12 (December) to 6 (June).

Listing 10-3 shows how to use the DS1286 in aBASIC-52 system. It's along program, but
accomplishes alot. If you don’'t need the alarm or another function, you can shorten the
program by editing out the code for it.

The program begins with a menu that asks you select the desired function: set-up and
initialize, display the time and date, or set the alarm. To initialize the clock/calendar, follow
the prompts in the subroutine beginning at line 200, and enter the information requested.
The program then uses the subroutine at line 3000 to convert the information to BCD, and
stores the result in the appropriate register of the DS1286. When all of the information has
been entered, line 470 starts the clock by bringing bit 7 of register 9 low.

Line 1000 begins the subroutine to display the current time and date. Before reading from
the DS1286, the program clears Te (transfer enable, register B, bit 7). This freezes the
registers at their current values, and allows you to read the complete time and date
information without errors.

If you don't freeze the registers, if one of them updates in the middle of a series of read
operations, you could end up with aninvalid time or date. For example, if you read the hour
just before 10:00, and read the minutes just after 11:00, you will think that it is 10:00 when
it isrealy 11:00. Freezing the registers ensures that you will read the value of all of the
registers as they were when TE went low. Freezing the registers does not stop the clock,
however. The DS1286 continuesto keep track of thetime, and whenyou bring e high again,
the chip updates the registers to the current time and date.

After the program freezes the registers, it reads the values from the DS1286, uses a
subroutine at line 3100 to convert them from BCD to decimal, and displays the results.
Finally, the program sets T to update the registers.

A subroutine at line 2000 handles the third function of the program, setting the alarm. To
use this routine, you must wire pin 1 of the DS1286 (INTA) to pin 13 of the 8052-BASIC
(INTZ). A menu asks you what type of alarm you would like, prompts you for additional
information, and stores the appropriate values in the DS1286's registers 3, 5, and 7.

Line 2240 configures INTA as a low-going pulse. An endless |oop at lines 2250-2270 then
waits for an interrupt. On interrupt, the program displays the word ALARM and the current
time and date. You could place any program code in the interrupt routine. For example, you
could read sensor data, or write to a port to cause a stepping motor to increment.

180 The Microcontroller Idea Book

Clocks and Calendars

Listing 10-3 (page 1 of 4). Clock and alarm routines for DS1286 Watchdog
Timer.

10 REM set WT to match address of DS1286 watchdog timer
20 WT=0A000H

30 DO

40 PRINT

50 PRINT “Select function:”

60 PRINT “Initialize and start clock 1"
70 PRINT “Display time and day 2"
80 PRINT “Set alarm 3"
90 INPUT A

100 IF A=1 THEN GOSUB 200

110 IF A=2 THEN GOSUB 1000

120 IF A=3 THEN GOSUB 2000

130 WHILE 1=1

140 END

200 REM initialize and start clock

210 REM stop clock while initializing

220 XBY (WT+9)=XBY (WT+9) .OR.80H

230 REM get time and date, convert each value to BCD and
store

240 INPUT “year (0-99)7? 7,X

250 GOSUB 3000

260 XBY (WT+0AH) =X

270 INPUT “month (1-12)7? ”,X

280 GOSUB 3000

290 XBY(WT+9)=(XBY (WT+9) .AND.OEOH) +X

300 INPUT “day of month (1-31)? ”,X

310 GOSUB 3000

320 XBY(WT+8)=X

330 INPUT “day of week (1-7)?2 ”,X

340 GOSUB 3000

350 XBY(WT+6)=X

360 INPUT “24-hr (0) or 12-hr (1) clock? ”,TT

370 IF TT=0 THEN GOSUB 3000 ELSE GOSUB 600

380 INPUT “minutes (0-59)? ~,X

390 GOSUB 3000

400 XBY (WT+2)=X

410 INPUT “seconds (0-59)? ”,X

420 GOSUB 3000

430 XBY (WT+1)=X

440 XBY (WT)=0

The Microcontroller Idea Book 181

Chapter 10

Listing 10-3 (page 2 of 4).

450 PRINT “Press any key when ready to start the clock”
460 A=GET : IF A=0 THEN GOTO 460

470 XBY (WT+9)=(XBY (WT+9)) .AND.7FH

480 RETURN

500 INPUT “hour (0-23)7? ”,X
510 GOSUB 3000

520 XBY (WT+4)=X

530 RETURN

590 REM set up 1l2-hour clock

600 INPUT “hour (1-12)7? ",X

610 INPUT “AM (0) or PM (1)2 ”,AP
620 GOSUB 3000

630 XBY (WT+4)=X+AP*20H+TT*40H

640 RETURN

1000 REM display current time and date
1010 REM clear TE for error-free reads
1020 XBY (WT+0BH)=XBY (WT+0BH) .OR.80H
1030 REM get hours

1040 X=XBY (WT+4) .AND.1FH

1050 GOSUB 3100

1060 PRINT “Time = ”,X,":",

1070 REM get minutes

1080 X=XBY (WT+2)

1090 GOSUB 3100

1100 PRINT X,":",

1110 REM get seconds

1120 X=XBY (WT+1)

1130 GOSUB 3100

1140 PRINT X,

1150 IF TT=0 THEN 1220

1160 IF AP=1 THEN 1190

1170 PRINT “am”

1180 GOTO 1220

1190 PRINT “pm”

1200 PRINT

182 The Microcontroller Idea Book

Clocks and Calendars

Listing 10-3 (page 3 of 4).

1210 REM get month

1220 X=XBY (WT+9) .AND.3FH

1230 GOSUB 3100

1240 PRINT “Date = ”,X,"/",

1250 REM get day of month

1260 X=XBY (WT+8)

1270 GOSUB 3100

1280 PRINT X,"/",

1290 REM get year

1300 X=XBY (WT+0AH)

1310 GOSUB 3100

1320 PRINT X

1330 REM get day of week

1340 X=XBY (WT+6)

1350 GOSUB 3100

1360 PRINT “Day of week = ”,X

1370 REM set TE when reads are done
1380 XBY (WT+0BH)=XBY (WT+0BH.OR.80H)
1390 RETURN

2000 REM set alarm

2010 PRINT “Select alarm type:”

2020 PRINT “Once per minute (1)”

2030 PRINT “When minutes match (2)~”

2040 PRINT “When hours and minutes match (3)”
2050 PRINT “When hours, minutes, and days match (4)”
2060 INPUT AF

2070 REM clear all 3 alarm mask bits

2080 XBY (WT+3)=XBY (WT+3) .AND.7FH

2090 XBY (WT+5)=XBY (WT+5) .AND.7FH

2100 XBY (WT+7)=XBY (WT+7) .AND.7FH

2110 REM set alarm mask bits as needed

2120 IF AF<4 THEN XBY (WT+7)=XBY (WT+7) .0OR.80H
2130 IF AF<3 THEN XBY (WT+5)=XBY (WT+5) .0OR.80H
2140 IF AF=1 THEN XBY (WT+3)=XBY (WT+3) .OR.80H
2150 IF AF>1 THEN INPUT “Minute? ”,M

2160 IF AF>2 THEN INPUT “Hour? ”,H

2170 IF AF=4 THEN INPUT “Day? ”,D

The Microcontroller Idea Book 183

Chapter 10

Listing 10-3 (page 4 of 4).

2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280

3000
3010
3020

3100
3110
3120

3200
3210
3220
3230

184

REM store alarm settings

IF AF1l THEN X=M : GOSUB 3000
IF AF2 THEN X=H : GOSUB 3000
IF AF=4 THEN X=D : GOSUB 3000

REM turn on alarm

XBY (WT+3)=80H+X
XBY (WT+5) =80H+X
XBY (WT+7)=80H+X

REM time-of-day alarm is edge-triggered, low-going, INTA

XBY (WT+0BH) =0D8H
DO

ONEX1 3200

WHILE 1=1

RETURN

REM convert decimal to BCD
X=INT(X/10)*16+X-INT(X/10)*10
RETURN

REM convert BCD to decimal

X=INT(X/16)*10+(X/16-INT(X/16))*16

RETURN

REM alarm interrupt routine
PRINT “ALARM”

GOSUB 1000

RETI

The Microcontroller Idea Book

Control Circuits

11

Control Circuits

This chapter presents avariety of waysto use an 8052-BASI C system for computer control.
The applications include switching power to a load, controlling a matrix of switches,
selecting the gain of an op amp, and controlling speed and direction of stepping and dc
motors.

Switching Power to a Load

You can use your 8052-BASIC system’s port bits to control power to all kinds of devices,
including those powered by alternating current (AC), or direct current (DC) at voltagesother
than 5 volts. Figure 11-1 showstwo port bitsthat control solid-state relaysthat switch power
to AC and DC loads.

A solid-staterelay isasimple, safe way to switch power to devicesthat require high voltages
or currents. A logic voltage at the relay’s control inputs determines whether or not power is
applied to the load.

In atypical solid-state relay, the control voltage is electrically isolated from the switching
circuits, which contain an optoisolated triac or asimilar device. Many AC solid-staterelays
include zero-switching circuits, which reduce noise by switching power only whenthe AC
signal is near zero volts.

The Microcontroller Idea Book 185

Chapter 11

SOLID-STATE RELAY
NORMALLY OPEN

CONTROL AC LOAD

_ n /\/ /-\/
+5V — O 17vAC
DATA BUS
(DO-D7) 7415374
%??———451D 102
i 414D 40— EACH BIT MAY CONTROL A
24 135 502 SOLID-STATE RELAY
DS |4 15
oy 6QH=>—
T;;———L17D 7QH6—
, 27 18fgp gt
E400H l Llek SOLID-STATE RELAY
“WRITE= 1
o NORMALLY OPEN
74HCTO?2 oc

- LATCH CONTROL DC LOAD
. - +
+5V
—O +12V
g:
DC LOAD

Figure 11-1. Solid-state relays provide an easy way to switch power to AC or
DC loads..

Using a solid-state relay saves you the trouble of building a similar circuit from discrete
components. Surplusrelays areinexpensive, aslow as $1.50 each, from vendors such as Al
Electronics, Marlin Jones, and Hosfelt. If you don’t have a data sheet for your relay, 1ook
for apair of control pins, usually labeled + and -. The other two pins connect to the load.

In Figure 11-1, the control bits are outputs of a 74LS374 latch addressed at E400h, as
described in Chapter 6. On anormally open relay, the load switches on when its control bit
islow. If youwant alogic highto turn ontheload, wireaninverter between the’ 374’s output
and the relay, or use anormally closed relay. Or you can use a 74HCT 374 latch in place of

186 The Microcontroller Idea Book

Control Circuits

the LSTTL part, and wire the desired bit to the relay’s + input, with the relay’s - input
connected to GND.

Look for arelay with a control voltage of 5 volts or less, and input control current of 15
milliamperes or less. The relay’s rated output voltages and currents should be greater than
those of the load you intend to switch.

Take care to work safely when you're wiring, testing, and using circuits that control
high-current or high-voltage loads. For circuits that connect to 117V line voltage and have
ametal chassis, you can ground the chassis by connecting it to the safety-ground wirein a
3-wire power cord. Insulate any exposed wires and terminals with heat-shrinkable tubing.
If in doubt about how to wire the power connections, get qualified help before you continue.

You can control arelay from any output port bit. Just write a1 or 0 to the corresponding bit
to switch the load on or off. If you control a solid-state relay with a port bit on an 8255 or
the 8052-BASIC, you may have to add an LSTTL or HCMOS buffer (such as a 74L S244)
to supply enough current to the relay’s control inputs.

Controlling a Switch Matrix

Figure 11-2 shows how you can use 9 output bits to control an 8 x 8 array of electronic
switches. You can connect any of eight X inputsto any of eight Y inputs, inany combination.
Possible applications include switching audio or video signals to different monitors or
recording instruments, selecting inputs for test equipment, or any situation that requires
flexible, changeable routing of analog or digital signals.

A Mitel MT8808 8 x 8 analog switch array simplifies the circuit design and programming.
The chip contains an array of crosspoint switches, plus a decoder that translates a 6-bit
address into a switch selection, and latches that control the opening and closing of the
switches. Maxim is another source for switch arrays like this.

Connecting an X and Y input requires the following steps: Write the X and Y addresses to
AX0-AX2 and AY0-AY 2. Bring STB high. Bring DATA high to close the switch. Bring STB low
to latch the data. To open a connection between an X and Y input, you do the same but bring
DATA low to open the switch.

You can make and break as many connections as you want by writing the appropriate values
to the chip. All previous switch settings remain until you change them by writing to the
specific switch.

You can connect the switchesin any combination. For example, you can connect one X input

to each of the eight Y inputs, to create eight distinct signal paths. Or, you can connect al
eight Y inputsto asingle X input, to route one signal along eight different paths.

The Microcontroller Idea Book 187

Chapter 11

The MT8808 is shown powered at +5V, but VDD may be anywherefrom 4.5V to 13.2V. VEE
is an optional negative supply that enables you to switch negative signals.

The switches do have some resistance, which varies with the supply voltage. At 5V, typical
switch resistance is 120 ohms; at 12V, it drops to 45 ohms. This should cause no problems
in switching standard LSTTL or CMOS signals. If you are routing an analog voltage to a
low-impedance input, the switch resistance may attenuate the signal. Maximum switching
frequency of the chip is 20 Megahertz.

InFigure11-2, the switch array iscontrolled by Port A and bit 7 of Port C (PC.7) on an 82C55
PPI. Bringing PC.7 high opens all of the switches. If you don’'t need this ability, you can tie
RESET low and use PC.7 for something else.

You can use any output port bits to control the MT8808. Logic high inputs at the M T8808
must beat least 3.5V, though, soif youuse NMOSor TTL outputs, add a10K pull-up resistor
from each output to +5V.

For asimpletest of the switches, you can connect a series of equal resistors as shown to the
X inputs. Each X input will then be at adifferent voltage. To verify aswitch closure, measure
the voltages at the selected X and Y inputs; they should match.

82C55 MT8808
S 8X8 SWITCH ARRAY
PAQ [2 241 Ax0
PAL |2 221a% | voH?8
PA2 [2 261 ax2 vz
pA3 H AN yo 6
PA4 |42 28 v y3H2
pAS 29 Liayo valld
a6 28 HDATA ysHS
pA7 27 21STROBE Y61—1
pc7 HO l@lpEseT Y
VDDVEEVSS X@ X1 X2 X3 X4 X5 X6 X7
4}19 13 |5 [6]23]7 [22[8 |21]9 |20
- sy
¥
— CONNECT 1@K RESISTORS

FOR TESTING

Figure 11-2. With the MT8808 switch array, an 8-bit output port can connect
eight X inputs to eight Y inputs, in any combination.

188 The Microcontroller Idea Book

Control Circuits

Listing 11-1. Controls an MT8808 switch matrix.

10 REM A=base address of 82C55

20 A=0FCOO0OH

30 REM configure 8255 for all outputs

40 XBY (A+3)=80H

50 REM bring MT8808’'s Reset low (off)

60 XBY (A+3)=0EH

70 XBY (A) =0

80 DO

90 INPUT “Open (0), close (1), or reset all (2)? ",Z
100 IF Zz=2 THEN GOSUB 300

110 IF Z THEN GOSUB 400

120 WHILE 1=1

130 END

290 REM reset all switches by toggling Reset
300 XBY(A+3)=0FH

310 XBY(A+3)=0EH

320 RETURN

400 PRINT “Enter inputs to connect or open: ”
410 INPUT “X (0-7)? ”,X

420 INPUT “Y (0-7)?2 ”,Y

430 REM write to MT8808 to open or close selected switch
440 B=X+Y*8+7Z*40H

450 XBY (A)=B

460 XBY(A)=B+80H

470 XBY(A)=B

480 RETURN

Listing 11-1 demonstrates switch operation by asking you whether to open or close aswitch
or reset them all, then performing the requested action.

Op Amp with Programmable Gain

Figure 11-3 showsaway to set the gain of an operational amplifier by writing to three output
port bits. Controlling the gain is National Semiconductor’s LF13006 or LF13007 digital-
gain-set IC. Each contains aresistor ladder, switches, and decoding logic that enable you to
select any of eight gains for an amplifier, attenuator, current source, or other circuit that
requires precise, variable outputs.

Each of the gain-set | Cs has two outputs, each with adifferent seriesof gains, asFigure 11-3
shows. The gain error is guaranteed to be 0.5 percent or less over the full range of operating
temperatures.

The Microcontroller Idea Book 189

Chapter 11

DATA BUS 7415374
0%
g? i]D 10_2) SD[G[N] EXTZ—
= 72D 206]@D[G[N2 BOUTE
—- 213D 3Q DIGIN3 AOUT
D3 8 9
D4—]34D 40?
D5—]45D 50]—5
D6—]76D 60%
D7—]87D 7QE INPUT
, ——%8D 8Q2
E400H | 11
-wR[TEj3 > | S%K
74HCTO? 1 o]
= RIS |
7W_R R_ﬁ

DGND _AGND V+

ST

+15V-15Y
GAIN TABLE
DIGIDIG|DIG GAIN
INJIN|]IN | LFI3006 | LF13007
1 2 3 |AOUT| BOUT | AOUT | BOUT
Q|0 @ l l l
Q| 0 1 2 1.25|1.25 |
0 | 1 Q| 4 2.5 2 1.6
0| 1 1 8 5 5 4
1|0 Q| 16 10 10 8
1|0 1] 32 20 20 16
1 | Q| 64 40 50 40
1 l 111281 80 | 1001 80

Figure 11-3. An LF13006/7 controls the gain of an LF411 op amp.

The bits that select the gain are outputs of a 74LS374 latch addressed at E400h. The
LF13006/7’s Chip-Select and Write pins are tied low, which causesthe gainsat pins 12 and
6 to immediately match the settings at DIGIN1-DIGINS.

If you want to control up to four gain-set chips and op amps, you can use the fiveremaining
outputs of the 74L S374 to select the desired chip. Tieal of the WR inputs to one bit, and tie
each CS input to one of the remaining bits. Then, to set the gain of an op amp, bring itSCS
input low, then bring WR low, then high to latch the data to the desired chip.

You can use just about any op amp with this circuit. Shown isan LF411, which has awide
bandwidth and low input offset and drift. A 10-picofarad capacitor from the op amp’s input

190 The Microcontroller Idea Book

Control Circuits

Listing 11-2. Demonstrates gain control of op amp.

10 REM A=address of output port
20 A=0E400H

30 DO

40 FOR I=0 TO 7

50 XBY (A)=I

60 PRINT “Gain = ”,I

70 PRINT “Press any key to continue...”
80 G=GET

90 DO : G=GET : UNTIL G<>0

100 NEXT T
110 WHILE 1=1
120 END

to output adds stability, as recommended by the LF13006/7’s data sheet. | found that the
capacitor did keep the op amp’s output from oscillating at certain gain settings.

The LF13006/7 a so hastwo matched, uncommitted resistors of about 15K each, which you
can use as you wish.

Listing 11-2 stepsthrough theavailablegains. You can verify circuit operation by connecting
asignal such as asine-wave output of asignal generator to VIN, and monitoring VOUT with
an oscilloscope. To use the full range of gains, the signal at pin 3 must be quite small. For
example, if your input is 100 millivolts peak-to-peak, at a gain of 128 the output is 12.8
volts.

Controlling a Stepper Motor

Figure 11-4 shows an 8-bit output port controlling a four-phase unipolar stepper motor.
Applying power to the motor’s four phases, or coils, in sequence causes the motor to turn.
The port uses a 74HCT 374 latch addressed at OE400h. If you use a 74LS374, add 10K
pullups to the outputs, to ensure that logic-high inputs to U3 and U5 meet the specified
minimum of 3.5V.

You can choose from several modes of operation for the motor, with each using a different
sequence of pulses. The frequency and sequence of the pulses determine the speed of the
motor.

In the circuit shown, after you write values to the port to set the speed and operating mode,
the motor continues to run automatically, using the selected parameters. This frees the

The Microcontroller Idea Book 191

Chapter 11

+5YV

3
1K

us U4
u?2 40668 555
DATA BUS 74HC374 QUAD SWITCH TIMER
(DO-D7) UATCH
2 13 R1 6
10 THRESH
202 | é B 2 SSSK 21R1G
30
2019 4 1 |3 18ex oyt L
12 6 R3
50
602 ol A Jo KL 7l g0y
7QLLE 12 R4 cTRLIS
80 11 - 1o 43K
E400H 2 v+ GND R T —ChD
111 1 4 [8 T
“WRITE 3 '%K (LM Y 0 |%|FI i 6 01uF
— - - 0lu
74HCT02 _l__ S = .
us
UCN58048B
STEPPER MOTOR -
TRANSLATOR/DRIVER +5y
STEP INPUT FREQUENCY - T [— L bl
N(D.7) 14 z N] :
DIRECTION 2 :
(R1)(CI) 10 :
. HALF STEP = D2 : :
N = VALUE OF [Q-4Q (@-15) 9 | - PHASE =13 : :
15 58 gzé D3 : :
US MODE SELECT 7 : :
DRIVE PIN PIN L E 5 :
FORMAT 9 1o T8 yqPa W
2- PHASE L L GND
:;SHQ%P [‘ »L4 16 |4 [5 [12]13 [')'I“ég?B 4- PHASE
sTep inmiBiTl B H 4) _14__’ SCHOTTKY UNIPOLAR
+5V L STEPPER MOTOR

Figure 11-4. The UCN5804B makes it easy to control the speed, direction,
and operating mode of a stepper motor.

8052-BASIC to do other things, without having to worry about generating the signals to
control each step of the rotation.

Thecircuit usesaUCN5804B stepper-motor translator/driver (U5) from Allegro Microsys-
tems (formerly Sprague). The chip automatically creates the drive signals for operation in
any of three modes.

U3isa4066B CMOS guad switch that enables you to select any of 15 speeds. U4 isa 555
timer that outputs a square wave in proportion to the selected speed. U5 uses the square
wave to time the steps.

U5 has four outputs that can sink up to 1.5 ampere each, and can sustain up to 35 volts. The
chip includes diodes that protect against inductive transients, and thermal protection that

192 The Microcontroller Idea Book

Control Circuits

disables the outputs if the chip begins to overheat. For high output currents, use a dide-on
DIP heat sink to prevent overheating.

The motor is a4-phase, unipolar type. This type of motor has six leads that connect to two
sets of coils, with two coilsin each set.

Surplus motors often don’t include complete documentation, but you can sort out the leads
with an ohmmeter and some experimenting. Begin by looking for alead that measures an
egual resistance (typically 5 to 50 ohms) to two of the other leads. Wirethislead to +5V and
pin 2 of U5. Wirethetwo leads that connect to thislead to pins 1 and 3 of U5 through diodes
D1 and D2. Swaping theleads at pins 1 and 3will reversethedirection of the motor. Identify
and wire the remaining three leads in the same way, but using pins 6, 7, and 8 of U5.

The5V motor ispowered directly by a+5V supply. Thissimpledrivecircuit isfinefor many
applications, especially at lower speeds. You can find examples of other drive circuitsin the
documentation from Airpax or other motor manufacturers.

The data sheet for the * 5804B recommends adding D1-D4 to prevent problemsin thelogic
circuits due to mutual coupling in the motor windings. Schottky diodes have a smaller
forward voltage drop (0.25V) than other silicon diodes.

Resistors R1-R4 and capacitor C1 set the frequency of U4's output. To select a speed, you
write a number from 1 to 15 to bits 0-3 of the output port. Each bit controls one of U3's
switches. For example, when pin 2 of U2 ishigh, pins1 and 2 of U3 connect, and R1isone
of U4's timing components. When pin 2 of U2 islow, pins1 and 2 of U3 are open, and R1
has no effect on U4. When more than one switch is closed, the parallel combination of
resistors forms the timing resistance. When all switches are open, U4’s output is high and
the motor stops.

In addition to the frequency of the step input, motor speed depends on the step angle of your
motor and the mode selected at U5. A typical motor has a step angle of 18 degrees, which
meansthat it requires 20 steps (360/18) for onefull rotation. Using the resistor values shown
and a motor with an 18-degree step angle, the motor speed will vary from 1 to 15 Hz in
wave-drive or 1-phase mode.

For adifferent range of speeds, use the formulashown to select resistor and capacitor val ues.
For speeds from 10 to 150 Hz, use 0.01 microfarad for C1, or decrease the values of R1-R4
by afactor of ten. The formula assumes that in the series R1-R4, each resistor is haf the
value of the preceding one. If you use a different resistor scaling, you’'ll have to calculate
the values of the parallel combinations of resistors to find the resulting frequencies.

Bits 5 and 6 of the port select the operating mode. Wave-drive mode powers one phase at a
time, while two-phase drive powers two phases at once, and half-step drive alternates

The Microcontroller Idea Book 193

Chapter 11

Listing 11-3. Controls a stepper motor.

10 REM A=address of output port

20 A=0E400H

30 DO

40 INPUT “Speed (1-15)2? ”,S

50 INPUT “Mode (l=wave, 2=2-phase, 3=1/2-step, 4=stop)?”,M
60 INPUT “Direction (0=Clockwise, l=Counterclockwise)? ”,D
70 IF M=1 THEN X=4

80 IF M=2 THEN X=0

90 IF M=3 THEN X=2

100 IF M=4 THEN X=6

110 XBY(A)=S+(X+D)*10H

120 WHILE 1=1

130 END

powering one and two phases. Wave drive uses the least power, but with reduced torque
compared to 2-phase drive. Half-step drive uses twice as many steps per revolution, and so
offersfiner control.

Bit 4 (pin 12 of U2) setsthe direction of rotation.

Ul
+12V UDN2993B *5V
8052-BASIC Ll 0AD SUPPLY LOGIC SUPPLY—L€ﬁ
(PWM) P1.2°—2IENABLE A ENABLE B2
Pl .o — 3l pHASE A PHASE BHA
41 GND GND 2
5 GND GND 2
DC ~ OlouT 1A ouT 1gHL- DC
MOTOR ZLouT 2A ouT 28H2 MOTOR
A 8l ven vegl2 B
— DUAL H-BRIDGE MOTOR DRIVERS — (opTIONAL
SECOND
MOTOR

Figure 11-5. Using a UDN2993 to control a DC motor with pulse-width

modulation.

194

The Microcontroller Idea Book

Control Circuits

Listing 11-4. Controls direction and speed of a DC motor with BASIC-52’s
PWM output.

10 PORT1=0FBH

20 T=1

30 INPUT “Direction (0 or 1)? ”,D

40 INPUT “High (on) pulse width (25 to OFFFFh)? ”,H

50 INPUT “Low (off time) pulse width (25 to OFFFFh)? ”,L
60 IF D=0 THEN PORT1=PORT1.AND.OFEH ELSE PORT1=PORT1.0OR.1
70 PRINT “Press any key to end program”

80 DO
90 PWwM H,L,T
100 G=GET

110 TUNTIL G<>0
120 PORT1=PORT1.AND.OFBH
130 END

You can stop the motor in any of three ways. You can bring bits 0-3 of the port low to stop
the timer. You can bring bit 7 high, which removes power from U4’s outputs. Or, you can
bring pins 9 and 10 of U5 high, which continues to apply power to the motor, but ignores
the step input.

Listing 11-3 promptsyou for amotor speed, mode of operation, and direction, and then runs
the motor as requested. You can stop the program, and the motor will continue to run, as
long as it remains connected to the port and you don’t write anything else to it.

Speed Control of a Continuous DC Motor

If you prefer ordinary continuous dc motors to steppers, Figure 11-5 shows a circuit that
uses BASIC-52's PwM output to control motor speed.

This circuit uses another Allegro chip, the UDN2993B (U1). Pins 1 and 8 of U1 connect to
the motor’s power supply, which can range from 10 to 40V. Pins 6 and 7 connect to the
motor. Pin 5 is the +5V logic supply, and pins 4, 5, 12, and 13 are additional grounds. At
pins 10, 11, 14, and 15, you can connect and control a second motor.

Pin 3 of Ul controls motor direction, and connects to bit 0 of Port 1 (P1.0) on the
8052-BASIC. Pin 2 of U1 switches power to the motor, with alogic low shutting the motor
off, and alogic high allowing current to flow. This pin connectsto Portl, bit 2 (P1.2) of the
8052-BASIC, which is the PwwM outpuit.

BASIC-52's PWM expression causes a series of pulsesto appear at P1.2, with this syntax:

The Microcontroller Idea Book 195

Chapter 11

PWM high pulse width, low pulse width, number of cycles

Listing 11-4 uses the PWM output to control motor speed. The program prompts you for
motor direction and the width of the high and low PwM pulses. For faster speeds, use large
values for the high pulses (H) and small values for the low pulses (L.). This resultsin a
waveform with a high duty cycle, or ratio of the width of a high pulse to the width of a
complete cycle (consisting of 1 high and 1 low pulse). With a high duty cycle, power is
appliedto themotor for alarge proportion of thetotal time. For slower speeds, dothereverse:
select small valuesfor the high pulsesand large valuesfor thelow ones, for alow duty cycle.

The actual pulse width equals the value in the PwM statement multiplied by 12, divided by
the frequency of the 8052-BASIC's timing crystal. So, with a 12-Megahertz crystal, if
H=1000 and L=10,000, high pulseswill be 1000 microseconds, or 1 millisecond, wide, and

U2 U3
Ul +5Y 40668 555
82C55 © QUAD SWITCH TIMER
4 13 RI
PAQ
T 2 2 DISCH
3 5 R2
PAI ENABLEA
T N ouTfs
2 6 R3
PA2 IN9 14 | 100K
| 8 - 9 190K | Ol THRESH .
12 R4 2 CTRL
PAS [- 10 47K TRIG c2
v oND RST v+ _ GND | -19.0IuF
+ 4 [8]
(LM 17 ¢l (L _'_—T
= RS LouF — +5V =
+5V 1M
PC6 11 STOP/START
pc7|1@ DIRECTION e U4
UDN29938
a—'—LOAD SUPPLY LOGIC SUPPLY
2L ENABLE A ENABLE B
551 31 PHASE A PHASE B
g GND GND
™ PGND GND
ENABLEA r__l;zj___ oOUT 1A ouUT 1B
N OUT 2A ouT 28
TL - ©.7(R6)(CI) VEA VEB
TH = @.7(RH) (CI) — DUAL H-BRIDGE MOTOR DRIVERS = opT|ONAL
RH = PARALLEL COMBINATION
OF RI-R5, AS DETERMINED SECOND
BY U2°S SWITCH SETTINGS. MOTOR

Figure 11-6. A 4066B quad switch and 555 timer enable you to select up to
16 motor speeds, with four port bits.

196

The Microcontroller Idea Book

Control Circuits

Listing 11-5. Controls direction and speed of Figure 11-6’s DC motor.

10 REM A=base address of 82C55

20 A=0FCOO0OH

30 REM configure 8255 for all outputs

40 XBY (A+3)=80H

50 INPUT “Direction (0 or 1)? ”,D

60 IF D=0 THEN XBY (A+3)=0EH ELSE XBY (A+3)=0FH
70 INPUT “Speed (0-15)2? ”,S

80 XBY (A) =S

90 REM bring 555’s Reset (PC.6) high (off)
100 XBY(A+3)=0DH

110 XBY(A)=S

120 G=GET

130 DO : G=GET : UNTIL G<>0

140 REM Remove 555’s Reset

150 XBY(A+3)=0CH

160 END

low pulses will be 10,000 microseconds, or 10 milliseconds, wide. For accurate time
calculations, set XTAL to match your crystal’s frequency.

In Listing 11-4, the number of cyclesis 1, so the PwM statement results in one low pulse
followed by one high pulse. Lines 100-110 then use a GET operator to check to seeif the
user has pressed akey and if not, the PwM output repeats. Checking for akey press enables
you to stop the program, since BASIC-52 ignores CONTROL+C keypresses while a PwM
statement is executing.

TheDO loop inthe program resultsin adelay between each PwM statement. During the delay,
P1.2 is high, so the motor is powered. Because of the delay, with a 12-Megahertz crystal, if
L=1200hand H=25, P1.2will haveequal onand off timesof about 5milliseconds. Increasing
L will lower the motor’s speed, and decreasing L or increasing H will raise it.

Although you can control a second motor with the *2993B, you get only one PWM output
on the 8052-BASIC, so it’s not feasible to control two motors independently in this way.

Figure 11-6 shows another way to control the speed of a DC motor. Asin Figure 11-4, the
circuit usesa4066B quad anal og switch to select atiming resistance for a555 timer. Varying
the timing resistance varies the duty cycle of the 555's output, and thus the motor’s speed.

You can select timing resistancesthat result in the motor speeds you want. The values shown
will vary the duty cycle from about 90 to 20 percent.

The Microcontroller Idea Book 197

Chapter 11

Four output bits of an 82C55 set the motor speed. Additional bits set the direction of rotation
and turn the motor on and off by controlling the 555’'s RESET input. You can use any output
port bitsto control the motor, but logic high inputs at the 4066B must be at least 3.5V, so if
you use NMOS or TTL outputs, add a 10K pull-up resistor from +5V to each port output
that connects to the 4066B.

Listing 11-5 asks you for a motor speed and direction, then causes the motor to spin as
directed.

198 The Microcontroller Idea Book

Wireless Links

12

Wireless Links

Wires and cables are by far the most common way to connect one circuit to another, but
wireless links are another option. Sometimes a wireless connection is more flexible,
convenient, or practical, because you don’'t have to string wires from point to point.

On an 8052-BASIC system, you can use awireless link to send commands to devices that
recognize and act on them. Or, in the other direction, the devices might transmit to an
8052-BASIC system that acts on the information received. Or you can have two 8052-BA-
SIC systems that communicate with each other over the wirelesslink.

This chapter describes ways to do these, using infrared energy or radio waves as the
transmitting medium.

Infrared Links

Over short distancesand at lower speeds, infrared isagood choicefor wirelesslinks. Figures
12-1 and 12-2 show alink whose transmitter sends 4-bit messages to one or morereceivers.
Each receiver has a 5-bit address, which enables the transmitter to send a message to a
selected receiver, while other receivers will ignoreit.

These circuits are independent modules controlled by manual switches or jumpers, rather
than by a microcontroller. This is a good way to get the link up and running. When that’s

The Microcontroller Idea Book 199

Chapter 12

Sl TRANSMIT

+5Y
A _I__.L ENABLE
Cl * - 5
Q. 14F 16 |14 oV
| VDD TE
T) Q; DATA oUTH2 ;‘ Ql
) 3 MPS2907
A3 Ul
;‘M MC145026 .
AS 4QKHZ
6lpe RTCHS 23K
Zip7 12 |/%2@1 F
9 CTC —
Lolos L B2 Jesc =
+ Vss RS 1 KHZ —

J_—g REMOTE CONTROL ENCODER

TIMING COMPONENT
SET AI-A5 TO MATCH RECEIVER'S ADDRESS. CALCULATIONS:

SET D6-D9 TO DESIRED DATA TO TRANSMIT.

] 1
FLOSC) = 5 =Ry (C2)

IKHZ < F < 40Q0KHZ
R2 > 2(R1)
20K < R2 < M
Y 10K < RI < IM
sy FUUS) - e e 400pF ¢ C2 < 15uF
R7 4 8 +5Y
36K RsT V+ Q
Z_Ibis ; U2AP——s—> 40KHZ OUT
3 OUTIE=> 40KHZ OUT
T%K e 74HCT 132
RS
éTR[G CTRLE2 1 QM
THRESEND XTAL 1 TSGK
4QKHZ
Locs 1 cé ;:EE%HF' c4
T@.@@luF T@.@l,uF :I:22PF /—‘|:22P|:
4QKHZ OSCILLATOR #1 4QKHZ OSCILLATOR #2

Figure 12-1. This infrared transmitter sends 4 bits of data to a receiver
identified by a 5-bit address. The transmitted pulses are modulated at 40
kilohertz, using either a 555 timer or 40-kHz crystal to generate the frequency.

200 The Microcontroller Idea Book

Wireless Links

[| (GROUNDED CASE) "5y
i?(i “= 16 Lo
1 VDD A To.1ur
1 3 9 2 =
22E§>}——————DATA IN A2LS -
A3
e 7 4HC00 6|, a4
GP1U5S2X RQ U4 A55
IR RECEIVER 170K° MC145027 o
15 NLEDI
c7 . - S
0.01uF T prla ¥ LED2 |
- 13 W LED3 W
0 D8 X
2 R2/C2 ol 2 » LED4 |
R10 _L_ y7 L D%LEDS R
330K o4 VSS S -
Q. 1uF 8
* REMOTE CONTROL DECODER

SET Al-A5 TO DESIRED ADDRESS.
LEDS 1-4 INDICATE RECEIVED DATA: ON
OFF

l
0

LEDS INDICATES VALID TRANSMISSION RECEIVED.

TIMING COMPONENT
CALCULATIONS:

(RO)(C7) = 3.95(R1)(C2)
(R1@)(C8) = 77(R1)(C2)

(Rl & C2 ARE IN TRANSMIT CIRCUIT)
RO = 10K

R10O > 100K
C7 = 400pF
C8 > 700pF

Figure 12-2. This infrared receiver identifies the transmissions intended for it,
and makes the received data available at D6-D9.

The Microcontroller Idea Book 201

Chapter 12

accomplished, you can replace themanual switcheswith computer control of thetransmitter,
receiver, or both.

Thecircuit uses some specialized componentsthat do alot of thework of detecting, filtering,
encoding, decoding, and error-checking of the transmissions. Two of these are Motorola's
MC145026 and MC145027 encoder/decoder pair, which are low-cost chips intended for
remote-control applications.

Transmitter Circuits

Figure 12-1 isthe infrared transmitter, which has three main functions. It converts four bits
of parallel datainto aserial stream. It then modulates the resulting signal by chopping it at
40 kilohertz. And, it causes one or more infrared-emitting diodes to transmit the encoded,
modulated data to a receiver that is tuned to respond to 40-kilohertz signals.

The encoder chip. The encoder (U1) has five address inputs (A1-A5) and four data inputs
(D6-D9). The logic states of these inputs determine the transmitted address and data. The
encoder outputs a different code for each of three states that the inputs may have: Logic O
(1L.5V or less), Logic 1 (3.5V or greater), or Open (no connection). Figure 12-3 shows the
transmissions that result for each of these states.

ENCODER
OSCILLATOR
(PIN 12)

ENCODED
"ONET | | -

ENCODED
"ZERO”

ENCODED
"OPEN" |

DATA PULSE PERIOD

DATA BIT PERIOD

Figure 12-3. Pulse patterns at pataout of the MC145026 encoder.

202 The Microcontroller Idea Book

Wireless Links

Because there are three possible states, theinformation istrinary (as opposed to binary, with
just two states). With five address inputs and three possible states for each, you can have as
many as 243 receivers, each with its own address. Although datainputs D6-D9 also transmit
in trinary form, the receiver decodes open inputs as logic 1's, so in effect the data bits are
binary. For testing, you can use jumpers or switches to +5V or ground, or leave the pins
open, to set the data and address inputs.

Transmit Enable (TE) has an internal pullup, which turns off the transmitter when pin 14 is
not connected. To enable transmitting, TE must pulse low for at least 65 nanoseconds. For
manual operation, you can use ajumper or switch (S1) to bring TE low.

Components R1, R2, and C2 set the frequency of the on-chip oscillator. Thisin turn controls
the width of the transmitted pulses. The figure shows the data sheet’s formulas and
recommendations for selecting values for these components. For best performance, use
components with 5% or tighter tolerance.

With the values shown, the oscillator’s frequency is 1 kilohertz, whichis at the low end of
M otorola s recommended range for the chip. With thisfrequency, the narrowest transmitted
pulses are 500 microseconds wide. | chose this pulse width to be compatible with the
requirements of theinfrared module in the receiver circuit, which may not respond reliably
at higher frequencies. If you have an oscilloscope or frequency counter, you can monitor
the oscillator frequency at U1's pin 12.

For each transmission, the encoder sends all nine address and data bits in sequence, waits
three data-bit times (24 milliseconds at 1 kHz), and then repeats the entire transmission. A
compl ete transmission requires 182 milliseconds from the time that TE goeslow. If you hold
TE low, the encoder will transmit continuously. Otherwise, the transmission ends after
sending the information twice.

The encoder’s output drives infrared-emitting diode IRED1. Instead of directly driving the
IRED with the encoder’s output (DATA OUT), NAND gate U2B combines DATA OUT with a
40-kHz oscillator. Theresult isthat the encoder’s pul sestransmit as bursts of 40-kHz pul ses.
Aswe'll see, the infrared receiver is designed to reject stray signals that don’t pulse at 40
kilohertz. Pulsing the IRED also saves power, since the IRED is never on constantly.

Oscillator alternatives. I’ veincluded achoice of two designsfor the 40-kHz oscillator. One
has a stable, accurate output but requires a specia timing crystal, while the other uses more
common components but requiresaconstant power-supply voltage and accurate resistor and
capacitor values for best stability and accuracy. You can choose whichever you prefer, and
connect the output to pin 5 of U2.

The crystal-controlled oscillator uses a40-kHz quartz crystal and an HCT132 Schmitt-trig-
ger NAND gate (U2A) operated as an amplifier. If you substitute a different inverter, you

The Microcontroller Idea Book 203

Chapter 12

may have to experiment with different component values. Some combinations might cause
the oscillator to run at harmonics of two or more times the crystal frequency. Digi-Key is
one source for the sometimes hard-to-find 40-kHz crystals. A ceramic resonator is another
option for a40-kHz source.

The other option is U3, which is a TLC555 timer configured as a 40-kHz oscillator.
Components R7, R8 and C5 determine the output frequency, according to the formula
shown. For accuracy and stability, use 5% or 1% tolerance values for these components.
Thetiming error of the 555 can also add afew percent error to the output frequency.

For best accuracy, use a CMOS timer like the TLC555, rather than the bipolar 555. For an
adjustable frequency, substitute a50K potentiometer for R8. Connect the center tap and one
other lead of the potentiometer in place of R8, and adjust the wiper for a 40-kHz output. If
you have no way to monitor U3's frequency, you can adjust R8 later, by watching the
receiver’s response as you transmit.

The two inputs to NAND gate U2B are the 40-kHz oscillator and U1's pin 15 (DATA OUT).
When DATA OUT is high, pin 6 of U2B pulses at 40 kilohertz. When DATA OUT is low, pin 6
of U2B is high. The result is a form of modulation, with the presence or absence of the
40-kHz signal representing the logic levels at the encoder’s output.

When pin 6 of U2B islow, PNPtransistor Q1 switcheson, and current through IRED1 causes
it to emit infrared energy. When pin 6 of U2B is high, Q1 and IRED1 are off. Theresult is
that IRED1 pulses at 40 kilohertz when pin 15 of Ul ishigh, and IRED1 is off when DATA
OUT is low. Resistor R3 limits Q1's base current. You can use any general-purpose or
switching PNPtransistor for Q1. Resistor R4 limits the current through IRED1 to about 50
milliamperes, which is high enough for basic testing. If necessary, you can increase the
IRED’s current later for increased range.

For best results, use an IRED with a high-power output. Radio Shack carries high-output
IREDs. Digi-Key also has a selection, including Harris' FSD1QT and F5E1QT. Devices
with outputs at 880 or 940 nanometers are acceptable. Look for a maximum continuous
forward current of at least 100 milliamperes.

Receiver Circuits

The IRED transmits the encoded address and data. On the other end, you need to detect the
transmitted signal, find out if the address matches, and if so, convert the received data into
a usable format. Figure 12-2 shows a circuit that does these, using an infrared-receiver
module and an MC145027 decoder that complements Figure 12-1's encoder.

Theinfrared-receiver module. MOD1 isa Sharp GP1U52X infrared-receiver module. Its
circuits are enclosed in ametal cube about half an inch on each side. The module has just

204 The Microcontroller Idea Book

Wireless Links

o LT

PHOTODIODE AMPLIFIER L IMITER 0 vouTt-
GNgS—
GPIU5S2X

/\ B vouT

BANDPASS
FILTER DEMODULATOR INTEGRATOR COMPARATOR

Figure 12-4. The GP1US52X infrared receiver contains a detector, amplifier,
and filter. When the receiver detects infrared energy pulsed at 40kHz, vout goes
low.

three connections, to +5V, ground, and VOUT. You can find this part at Radio Shack and
other sources.

Another optionfor MOD1isLite-On'sLTM-8834-2, carried by Digi-Key. It hasa32.7-kHz
center frequency, rather than 40 kilohertz, so you'll have to adjust the oscillator, either by
adjusting R8 or by changing XTAL 1. Digi-Key hasa32.56-kHz crystal that’s agood match
for thisreceiver.

When MODL1 detects infrared energy that is pulsed at 40 kilohertz, its VOUT is low.
Otherwise, VOUT is high. Figure 12-4 shows ablock diagram of what’s inside the module.
The photodiode emits a current when it senses infrared energy in the range 880-1080
nanometers. An optical filter on the photodiode blocks visible light, to reduce responsesto
ambient light. The module amplifies the detected signal and limits the peaks. A bandpass
filter centered on 40 kilohertz reduces the amplitude of signals outside of the range of 36-44
kilohertz. A demodulator filters out the 40-kHz oscillations and recreates the original pulse
pattern generated by the encoder. An integrator and comparator help to ensure a clean output
at vouT.

The module does a good job of detecting transmitted infrared pulses at 40 kilohertz.
Unfortunately, in spite of its optical filter, it also has some response to ambient light, which

The Microcontroller Idea Book 205

Chapter 12

causes brief, random pulses to appear at VOUT even when an IRED isn’'t transmitting to the
module. But aswe' Il see, these random pul ses are rejected by the decoder chip, which looks
for a specific pulse pattern to identify the transmissions intended for it.

To reduce false triggers on ambient light, you can ground MOD1's case by soldering awire
from pin 3 to the case. You can also add more optical filtering, though for this application,
it shouldn’t be necessary. Photographic film isagood, inexpensivefilter that passesinfrared
and blocks visiblelight. Cover the photodiode’s window with an exposed, developed scrap
of color-print negative film, or an unexposed, devel oped scrap of (positive) color-slidefilm.

Thesigna at pin 1 of MODL1 is essentially the same as U1's DATA OUT in Figure 12-1, but
inverted. USA inverts MOD1's output so that pin 9 of U4 matches U1'SDATA OUT. You can
substitute just about any CMOS inverter.

The decoder chip. U4 requires timing components to match U1’s oscillator frequency. R9
and C7 set the timing that discriminates between narrow and wide received pulses. R10 and
C8 st the timing that detects the end of an encoded word and the end of a transmission.
Figure 12-2 shows Motorola’'s formulas and recommendations for choosing these values.

U4 has five address lines (A1-A5), which must match A1-A5 on Ul. Aswith U1, the inputs
are trinary, and may be logic high, logic low, or open. For testing, you can set these with
jumpers or switches.

When MOD1 transmits, U4 examines theincoming bits at its pin 9. If the five address bits
received match U4’ saddress, U4 storesthe next four bits and comparesthem to the previous
four data bits received. If the data bits don’t match, D6-D9 don’t change. If the data bits do
match, thereceiver latches the new datato D6-D9 and brings VT (pin 11) high to indicate that
avalid transmission was received.

The receiver doesn't latch D6-D9 until it receives the same data twice in a row. This
complements the behavior of U1, which automatically sends each transmission twice.
Requiring the receiver to see the same data twice prevents the receiver from accepting data
that was garbled in transmitting. The only way that an error can slip through isif the address
transmits correctly both times, and the data contains the same error twice in a rowv—if a
transmitted O shows up as a 1 at the receiver, for example. The chances of this are small,
especially since the 40-kHz modul ation adds another layer of rejection of unwanted signals.

The data at D6-D9 remains until it is replaced by new received data. VT remains high until
an error is detected or until there is no input for four data-bit times (32 milliseconds at 1
kHZ).

Figure 12-2 shows LEDs at D6-D9 and VT for monitoring these outputs during testing.
Current-limiting resistors aren’'t required, since U4 sources only about 5 milliamperes

206 The Microcontroller Idea Book

Wireless Links

through the LEDs. If you prefer an audible indicator to announce avalid transmission, you
can replace LED5S with a piezoelectric buzzer. Instead of the LEDS, you can connect just
about any digital inputs to D6-D9.

Power-supply Options

Figures12-1 and 12-2 show thetransmitter and receiver powered at +5 volts. Recommended
supply voltagesfor Ul and U4 are4.5to 18V, for U2 and U5, 2to 6V, for U3, 2to 15V, and
for MOD1, 4.7 to 5.3V. This means that usable supply voltages for the transmitter circuit
are4. 5to 6V, and for the receiver circuit, 4.7 to 5.3V.

Each circuit draws only afew milliamperes, though the test LEDs add about 5 milliamperes
each when on. Any regulated 5-volt supply that can output 100 milliamperesis suitable for
the transmitter or receiver.

Chancesarethat you' [l want to operate the transmitter, receiver, or both, from batteries. Four
NiCad cells in series create a reasonably stable source at around 4.8V. Using unregulated
alkaline cellsisless desirable, since their voltage drops quite a bit as they discharge (from
1.5V to around 1V per cell), and there is no series combination of 1.5V cells that meets
MODZ1's supply-voltage recommendation.

A regulated supply isanother option. When the supply voltage varies, U3’ soutput frequency
and MODZ1's frequency response also vary slightly. A regulated supply eliminates these
concerns.

Figure 12-5 shows a 5V supply that uses five or six NiCad or alkaline cells and National
Semiconductor’s 2931T-5.0 low-drop-out 5V regulator. The regulator requires an input of
just 5.6V for a5V output at 100 milliamperes. You can aso use a9V akaline NiCad battery
to power the regulator, but due to the low capacities of this type, you'll get fewer hours of
use.

LM2931T-5.0

— IN ouT TSV ouT —— OUT
= 0 —— GND

IN

T GND /P@@MF
+5.6 TO +9V LM2931T-5.0
— 5V REGULATOR

Figure 12-5. The LM2931T-5.0 voltage regulator creates a stable +5V supply
with an input of 5.6V or greater.

The Microcontroller Idea Book 207

Chapter 12

Basic tests

Whenyou havethecircuitsbuilt and tested, if you have an oscilloscopeor frequency counter,
you can measure the frequency at pin 3 of U3 or pin 3 of U2A. If you're using U3, adjust
R8 as needed for a 40-kHz output. You can also measure at pin 12 of U1 to verify that its
oscillator is about 1 kilohertz.

To send atest transmission, set A1-A5 identically at U1 and U4, and set D6-D9 to the values
you want to transmit. The schematics show the components set up to transmit the value 1000
to address 00001.

AimIRED1 sothat it pointsto MOD1's photodiode window. To begin, placethe transmitter
and receiver afew feet apart. To transmit, press S1 momentarily to pulse pin 14 of U1 low.
At U4, LEDS5 should flash toindicatethat avalid transmission wasreceived. At D6-D9, LED4
should be on and LEDs 1-3 should be off, to show that the value 1000 was received.

To change the data to be transmitted, move one or more jumpers or switchesat U1's D6-D9.
Press S1, and LEDs 1-4 should change to match. With these circuits, | was able to receive
datafrom 12 feet away, with only casual aligning of the transmitter and receiver.

If you weren’t able to measure and adjust U3's frequency, you can do so now. Jumper pin
12 of U1 to ground to cause the transmitter to continuoudly transmit. With IRED1 aimed at
MOD1, slowly adjust potentiometer R8 until LEDS5 lights, continue to adjust until LED5
turns off, and then return R8 to about the middle of the range where LED5 ison. You can
then keep the potentiometer, or replace it with a single resistor that matches the value you
found experimentally.

Toadd asecond receiver, build another circuit identical to Figure 12-2's, but with the address
inputs set differently. In thisway, you can transmit to a selected receiver by changingA1-A5
at thetransmitter. Even if areceiver detects atransmission meant for another receiver, it will
ignore it, since the address doesn’t match.

Computer-controlled Transmitter

Figure 12-6 isatransmitter that is similar to 12-1, but with the manual controls replaced by
outputs of an 82(C)55 PPI (from Chapter 6). Port A and bits4-7 of Port C are configured as
outputs.

Thetwo halves, or 4-bit nibbles, of the8255’ sPort A control thetransmitted dataand address.
The high nibble controlsdatainputs D6-D9, and thelow nibble controlsaddressinputs A1-A4.
The fifth address input, A5, istied high, so you can control both the data and address with
one 8-bit port. This reduces the number of decoders you can transmit to from 32 to 16, but
this shouldn’t be a problem in most applications.

208 The Microcontroller Idea Book

Wireless Links

82(C)55
MC145026 ANY CMOS +5V
oap L4 N NAND GATE
15 K
PA ; 2|50 DATA OUT
Al jAs L_ MPS2007
o 40 +5YV A 4QKHZ IN
PA4 .
PAS o2 Ts
38 (A5
PAG ==
PA7 6l pe IRED i
; > 43K -
D8 RTCHS
12| g
" CTC12 K@-@l/ﬂ:.
- T rsHL 3L 1Kz

REMOTE CONTROL ENCODER

Figure 12-6. Using an 8255 to control an infrared transmitter.

The encoder’s transmit enable (TE) input connects to Port C, bit 7 on the 8255, which you
can set and clear with the 8255's bit-control instructions.

Listing 12-1 shows a BASIC-52 program that causes the Figure 12-6's encoder to send a
4-bit value to Figure 12-2's decoder. The program asks for an address and data to transmit,
writes the information to Port A, and then brings bit 7 of Port C low, then high, to cause the
encoder to transmit the information. If the transmitted address matches the decoder’s, the
transmitted dataappears at the decoder’ s data outputs, and itsvT (valid transmission) output
goes high. If the addresses do not match, or if the decoder detects an error in transmission,
VT remains low and the decoder ignores the data.

If you want to do everything with a single 8-bit port, you can tie another of the encoder’s
address inputs high (or low, or leave it open), and use the additional bit on Port A to control
TE. If you do this, you' Il have to use Boolean operators (AND, OR) to ensure that the data
and address don’t change when you toggle TE. If you know you are going to transmit to only
one address, you can hard-wire al of the encoder’s address inputs and free up four bitson
the 8255 for other uses.

The Microcontroller Idea Book 209

Chapter 12

Listing 12-1. Causes an encoder to transmit requested data.

10 REM 8255 mode set: Ports A,C = output, Port B = input
20 XBY (OFC03H) =82H

30 DO
40 INPUT “Enter the decoder’s address (0-15): ”,A
50 INPUT “Enter the data to send (0-15): ”,D

60 REM Write the address and data information to Port A
70 XBY (OFCOOH) = (D*10H+A)

80 REM Toggle TE (Port C, bit 7)

90 XBY (OFCO3H) =0EH

100 XBY(OFCO3H)=0FH

110 WHILE 1=1

120 END

Computer-controlled Receiver

Instead of, or in addition to, computer control of thetransmitter, you can also add acomputer
interface at the receiver. For example, a data logger might accept data from a remote
transmitter and processthe data or storeit for later use. Figure 12-7 shows areceiver similar
to Figure 12-2's, with the manual controls replaced by port bits of an 82(C)55.

The circuit uses different port bits from Figure 12-6's circuit, SO you can connect both a
transmitter and areceiver to one 8255 if you wish. The low nibble of Port C is configured
asan output, and sets A1-A4 on the decoder. Asinthe previous circuit, A5 istied high so you
can set the address with 4 bits. Port B is configured as an input, and its bits 4-7 store the
data received at the decoder’s D6-D9. VT isinverted and then connects to the 8052'STNT1
(pin 13). You can use any CMOS inverter.

Listing 12-2 isaBASIC-52 program that sets up the 8255 to receive data at port B, in Mode
0. The program writes an addressto the decoder’s addressinputs, and a so turns off TE (PC.7
in Figure 12-6, to ensure that the encoder on this end (if connected) isn’t transmitting while
the decoder is receiving. The program uses an edge-detecting interrupt to ensure that the
program won't re-interrupt if VT isstill low when the interrupt routine ends.

The main program is a do-nothing loop that waits for an interrupt. When vT goes high,
indicating that avalid transmission has been received, the 8052-BA SIC executes an interrupt
routine that reads the data at bits 4-7 of Port B and displays it on the host computer.

Using VT to generate an interrupt is a handy way to detect when new data has arrived, but
you don’'t have to use interrupts. If you don’t enable interrupt 1, you can read Port 3's bit 3
periodically to find out if anew transmission hasarrived. Or, you can leave VT unconnected

210 The Microcontroller Idea Book

Wireless Links

Y Gr
8§2(C)55 MC145027 ANY CMOS . éﬁ
INVERTER 1 :>
DATA INii——+<:::
6
23 14 IR RECEIVER
PBS b7 [60K
PBO | 131 hg 7
PB7 12fpng cl
PCO ig LA ;Ei@'@luF
PCl {2 §A2 -
RV
13 +5YV Jé.luF 330K
aﬁ%AS
VT
) REMOTE CONTROL DECODER
SINTLA []
ANY CMOS
INVERTER

Figure 12-7. Using an 8255 to control and access an infrared receiver.

and just read Port B once a minute, or on user request, or trigger the reading by some other
factor under program control.

Aswith the encoder circuit, you don’t have to use an 8255 to read and write to the decoder.
Any latched port outputs will do for A1-A4, and any port inputs will do for D6-D9. Because
the decoder latchesthe data, you don’t need additional input latches. If thecircuit will receive
datafrom only one address, you can hardwire the decoder’s A1-A5 and free up four bitson
the 8255 for other uses.

You can transmit to Figure 12-7's circuit with either a manual or computer-controlled
transmitter. Set the transmitter’s address inputs to match the receiver’s address, select the
data you want to send, transmit, and view the received data on the 8052-BASIC system’s
host display.

The Microcontroller Idea Book 211

Chapter 12

Listing 12-2. Reads received data at the decoder.

10 REM 8255 mode set: Ports A,C = output; Port B = input
20 XBY (0OFCO3H) =82H

30 REM A=decoder address (0-15)

40 A=2

50 REM Write address to Port C, turn TE (PC.7) off (high)
60 XBY (OFCO02H) =80H+A.OR.XBY (0FC02H)

70 REM Use edge-triggered interrupt

80 TCON=TCON.OR.4

90 DO

100 REM Wait for interrupt

110 ONEX1 500

120 WHILE 1=1

130 END

480 REM On interrupt 1, print received data
490 REM Data is at Port B, bits 4-7

500 PHO. (XBY(OFCO01H) .AND.OFOQOH) /10H

510 RETI

You can have more than one receiver in alink. If each has a unique address, it will accept
only the transmissions meant for it.

Increasing the Distance

When you have your link up and running, one of the first challengesis to see how far you
canreliably transmit. Two waysto increase the length of thelink are by increasing the power
of the transmitted signal, and by focusing the signal more precisely on the receiver.

About Infrared Energy

But first, some basics about infrared. Like visible light, infrared energy is a form of
electromagnetic radiation. Infra means below, and infrared frequencies are just below those
of red light. Infrared frequencies are invisible, or beyond the range detected by the human
eye. Sincewavelengthistheinverseof frequency, infrared wavelengthsarelonger than those
of visible light. Visible light covers the range 400-700 nm (nanometers), while infrared
includes 700 nm through 1 million nm. (400 nanometersis 0.4 micron, or 4000 angstroms.)

Infrared-emitting diodes, or IREDs, are low-cost, widely available sources of infrared

energy. AnlRED isasemiconductor diodethat emitsinfrared energy whenaforward current
passes through it, much as an LED emits visible light.

212 The Microcontroller Idea Book

Wireless Links

IREDs emit energy at specific wavelengths. Two popular typesare GaAs(galliumarsenide),
at 940 nm, and GaAlAs(gallium aluminum arsenide), at 880 nm. These are both intherange
known as near infrared, to signify that their wavelengths are close to the visible spectrum.

Infrared detectors are also specific in the wavelengths they detect, although most will
respond over arange. For example, the Sharp GP1U52X receiver module is most sensitive
at 980 nm, but will also respond to thelonger-wavel ength emissionsfrom GaAsand GaAlAs
IREDs. Although the GaAs IREDs are a closer match at 940 nm, the GaAlAs IREDs tend

+5YV +5V
(A) (B)
RI Ql M RI al
I_\—,__ O—~"—— MPS2907 O—~~— MPS2907
5V =0FF 330 5V=0FF 330
QV=-0N QV=0N)1
R2 R2
|
[-PEAK IRED CURRENT [-PEAK IRED CURRENT | <z <7
W] N w]
I(mA) | R2(Q) 1(mA) | R2(Q) L <
50 30 \&Q 50 15 ‘RIQ\Q \f%
100 15 - 100 8.2 —
150 10 150 5.6
(D) +12V
Q Rr3
R3=6.20 FOR 150mA -
PEAK IRED CURRENT ALY
(C) ey W
R2
O N
R2-110 FOR 150QmA 10K h
PEAK IRED CURRENT $R2 N
R
BN
|_
F: IRF511
pigH pigs M
5V=0FF 5V=0FF 1K
QV-ON 74HC4049 QV=-0N 2N2222

Figure 12-8. Circuits to increase the power and transmitting distance of an
infrared link: (A) IREDs in series, (B) IREDs in parallel with PNP transistor
driver, (C) IREDs in parallel with NPN transistor driver, and (D) MOSFET driver.

The Microcontroller Idea Book 213

Chapter 12

to be more efficient, so they may work as well even though 880 nm isn’t as good a match
with the detector.

Alternate Drive Circuits for IREDs

You can increase the strength of an infrared signal in two ways. by increasing the current
through the IREDSs, or by increasing the number of IREDs. Figure 12-8 shows both options,
in a variety of circuits. All connect to the output of the NAND gate that combines the
encoder’s output and the 40-kilohertz oscillator in Figures 12-1 and 12-5.

Series drive. A simple way to double the power is to use two IREDSs in series, as Figure
12-8A shows. With about 1.7 voltsacrosseach IRED, the series combination drops 3.4 volts.
Instead of wasting energy by dropping 3 volts across a resistor, more of the current does
useful work by powering a second IRED.

The maximum possible current through the IREDs is determined by the transistor’s base
current and gain. Outputsin the 74HC logic family can sink up to 25 milliamperes (absolute
maximum), and are a good choice for driving the base.

Resistor R2 controls the amount of current through the IREDs. To determine a safe current
through an IRED, you need to know the specifications of the IRED you are using, as well
ashow you planto usethe | RED inyour circuit. The datasheet for any IRED should include
an absolute maximum rating for continuous current. This is the maximum current that the
device can withstand without damage. For example, for Harris' F5D1, this value is 100
milliamperes. When the IRED is powered continuously, the current through it shouldn’t
exceed thisvalue. Since thisis an absolute maximum, it'sagood ideato stay well below it.

Theinfrared transmitter doesn’t require the IRED to be on continuously, however. Instead,
it pulses the IRED at 40 kilohertz. In non-continuous, or pulsed, operation, the IRED can
handle much greater currents. The amount of allowable current depends on the pulse’s duty
cycle, which equalsthe width of apulse divided by the width of acompl ete on-and-off cycle.

Unfortunately, the data sheets often do not say how to determine the limits for a particular
pulse width and repetition rate. Occasionally, you get a graph of maximum forward current
versus pulse width and duty cycle. Other data sheets just offer afew examples.

The F5D1’s data sheet includes just two ratings for pulsed operation. For 10-microsecond
pulsesrepeating at 100 Hz, the IRED’s maximum peak current is 3 amperes, or 30 timesthe
continuous rating. And for even shorter 1-microsecond pulses, repeating at 200 Hz, the
maximum is 10 amperes. But neither of these describes the situation for the infrared
transmitter.

214 The Microcontroller Idea Book

Wireless Links

In the infrared link, the amount of time the IRED is on depends on what information it is
sending, and how often it transmits. When the IRED is pulsed at 40 kilohertz, it is on for
just half of each 25-microsecond cycle. But the IRED pulses only when transmitting logic
high outputs from the encoder. For logic low outputs, and when no data is transmitting, the
IRED is off.

With the encoder chip clocked at 1 kilohertz, an encoded “1" contains two 3.5-millisecond
high pulsesand two 0.5-millisecond low pulses. Thismeansthat the IRED is pulsing almost
90 percent of the total time. If the 40-kilohertz oscillator has a 50-percent duty cycle, the
IRED ison for half of thistime, or 45 percent of each transmission. If you send alot of O's
(if the receiver’'s address is 00, for example), or if you send only occasional, short
transmissions, the average current will be much less.

In Figure 12-8A, with R2 at 30 ohms, the peak current through the IREDs is about 50
milliamperes, and the average current is under 25 milliamperes, well below the 100-mil-
liampere limit. Even at a peak current of 150 milliamperes, the average over each transmis-
sion cyclewill be under 70 milliamperes, still a safe level.

If you do pulsethe IRED at 100 milliamperes or more, you haveto be very careful to design
your circuit so that the IRED never comes on continuously. When not transmitting data, the
IRED should be off. At higher currents, it's a good idea to use a current-limiting resistor
with a 1/2-watt or greater power rating.

Parallel drive. If two IREDs aren’t enough, you can add two more in parallel, as Figure
12-8B shows. The value of the current-limiting resistor is smaller because it has twice the
current through it, but the same voltage drop across it. Figure 12-8C shows four IREDs
powered by an NPN transistor. A 74HC4049 inverter controls the transistor’s base current.
With multiples of this circuit, you can have as many IREDs as your power supply can
support.

12V drive. And finally, if you have a12-volt supply available, you can add up to six IREDs
in series, as Figure 12-8D shows. The IRF511 MOSFET turns on when avoltageis applied
toits gate. To turn on fully, the MOSFET requires a gate voltage greater than 5 volts.

For more powerful transmissionsto a specific receiver, you can mount multiple IREDsin a
cluster, all pointing at the receiver. If you want to transmit to multiple receivers, or if a
receiver’s exact location is unknown, you can mount the IREDs so that they transmit across
awider path.

Using Lenses

Another way to increase the range of alink is with optical lenses that focus or spread the
transmitted energy.

The Microcontroller Idea Book 215

Chapter 12

Some IREDs are manufactured with integral lenses that focus the output into a beam. For
example, Harris F5D1 and F5E1 IREDs are identical, except that the F5D1 has alens that
aimsthe energy in anarrow beam, while the F5E1 has aflat window and wider beam angle.
AnIRED with anintegral lensisan easy, low-cost option, if it can do thejob. A flat-window
package is useful if you want to add an external lens, or if you want awider beam, to reach
multiple receivers around a room, for example.

If you're interested in experimenting with lenses, Edmund Scientific has a huge selection,
including inexpensive educational -grade | enses, lens mounts, optical benches, and bookson
optics.

Although infrared links are most often thought of as line-of-sight paths—for transmitting
across a room, for example—optics can also overcome this limitation. For example, with
mirrors, you can transmit around corners.

Radio Links

Another possibility for wirelesslinksisto useradio frequencies. Radio transmissions consi st
of high-frequency electromagnetic waves that travel through the atmosphere. Most radio
waves will also pass through windows, walls, and other solid objects. This makes radio
useful where a direct line-of-sight between transmitter and receiver isn’t available. Radio
can also be a good choice for outdoor links, where daylight may interfere with infrared
transmissions and wired links are inconvenient.

Radio circuits require special construction techniques, and radio transmissions must not
violate regulations of agencies such as the Federal Communications Commission (FCC).
For these reasons, the easiest option is to buy the transmitters and receivers for your link,
rather than build them yourself.

One source of low-cost radio-frequency transmitter and receiver circuitsis Electronics 123.
The links transmit in the range 300-315 Megahertz, a frequency band used by many
garage-door openers and alarm systems. The boards come with complete schematics and
instructions for use.

Thecircuitsaresimilar to theinfrared-transmitting circuitsdescribed earlier. Thetransmitter
sends 4-bit codes to areceiver identified by an 8-bit address. The transmitter and receiver
use Holtek’s HT-12E encoder and HT-12D or HT-12F decoder chips, also available sepa-
rately from Electronics 123 and Digi-Key. The chips are similar in operation to Motorola's
146026/7 encoder and decoder, and you can in fact use them in infrared links as well. The
encoder and decoder each require just one resistor to set the oscillator frequency.

216 The Microcontroller Idea Book

Calling Assembly-language Routines

13

Calling Assembly-language
Routines

Although BASIC-52 is a convenient programming language that can do a lot, sometimes
it's just not fast enough for what you need. A linein a BASIC-52 program can take many
milliseconds to execute, and for some applications, thisis just too long.

One way to speed things up is to use assembly language. This doesn’t mean that you have
to give up on BASIC-52 entirely. You can continue to use it for the parts of your programs
that aren’t time-critical, and call assembly-language routines only for those parts that have
to be fast. BASIC-52 can also serve as a convenient devel opment system for loading and
testing assembly-language routines in RAM, and even for programming the routines into
NV memory.

Calling routinesfrom BASIC-52 isagood way to become familiar with assembly-language
programming. Plus, through experimenting, you can learn alot about the internal workings
of the 8052 chip and how the BASIC-52 interpreter works.

This chapter explores how and when to interface assembly-language routines to BASIC-52
programs. An example project connects a digital-to-analog converter to the 8052-BASIC.
Programsin BASIC-52 and assembly language cause asinewaveto appear at theconverter’s
output. There's also a section on how to use your BASIC-52 system as a genera -purpose

The Microcontroller Idea Book 217

Chapter 13

EPROM programmer, for storing assembly-language routines or anything else you want to
program into an EPROM, for use on an 8052-BASIC system or another device.

Assembly-language Basics

The bare 8052 chip understands just one language: the binary machine codes that make up
thechip’sinstruction set. The 8052'sdata book describes the function of each of themachine
codes.

You can, of course, write programs without having to look up binary codes, by using a
programming language. The language that is closest to the machine codes is assembly
language, where amnemonic, or abbreviation, represents each of the codes.

The assembly-language program that you write is called a source file. After you write a
source file, you must use an assembler to translate the source file into an object file, which
contains the machine codes that the chip will execute. You also must have away of storing
the object filein the8052-BA SI C system’s memory, wherethe 8052-BASI C chip can access
it.

TheBASIC-52 interpreter isitself an assembled program that the 8052 runs on boot-up. The
interpreter reads your BASIC-52 programs from memory and trandates them into machine
codes for the 8052 to execute. It does the same for the BASIC-52 commands that you type
at the keyboard. The interpreter program includes many modular routines that BASIC-52
uses, such as reading a character from the serial port or comparing two values.

BASIC-52 programs are slow for two reasons. Oneisthat the interpreter must translate each
line of code every time it executes it. With assembly language, the assembler trandates the
program only once, and the 8052 then reads and executes the binary codes directly from
memory. The other reason for the downess of BASIC-52 programs is that the nterpreter
program’s tranglation from BA SIC-52 to machine code doesn’t result in the most efficient
code. Programming directly in assembly language gives you much greater control over the
fina code that the 8052 will execute.

Incidentally, assembly language isn't the only way to get faster execution times. Other
optionsinclude using aBASIC or C compiler or using afaster crystal to clock the 8052. But
asarule, these approacheswill not speed up programsasdramatically asassembly language.

What You Need

To add assembly-language routines to your BASIC-52 programs, you need severa items: a
programming reference with details about the 8052's assembly language, a text editor for
writing the source files, an assembler to create the executable files, memory in the
8052-BASIC system for storing your programs, and away to transfer your executable files

218 The Microcontroller Idea Book

Calling Assembly-language Routines

into memory in the 8052-BASIC system. The following sections describe each of these in
more detail.

Programming Reference

This book concentrates on BASIC-52 programming. I’ ve included enough information
about assembly language to get you started programming, plus what you need to know to
interface assembly-language routines to BASIC-52. But there is much more to assembly-
language programming than | can cover here.

If you are an experienced assembly-language programmer, Intel’s Embedded Microcontrol-
lers handbook, or a similar reference from another 8052 vendor, may be all you need as a
reference. The handbook includes a programmer’s guide and describes each of the 8052's
instructions.

If you're just starting out with assembly language, you might want to invest in a more
complete text that includes examples and explanations of how to put together a program.
Examples can be extremely useful for seeing how to do common tasks like generating a
timing delay or handling an interrupt. Appendix A lists several books on the 8051 family
that include programming examples and tutorials.

Text Editor

The text editor is the software that you use to create your source files. The editor program
must be able to create files in straight ASCII format, without adding any formatting
codes. Just about all word processors have this ability, as do simpler text editors like MS-
DOSsEDIT.

Assembler

The assembler isthe program that creates an object, or executable, file from your source
file. If you write assembly-language programs for your personal computer, you use an as-
sembler, such as MASM for 80x86 microprocessors. MASM creates files that will exe-
cute on 80x86 systems, using the 80x86’s instruction set.

To assemble a program for an 8052 microcontroller, you need a special type of assembler
called a cross assembler. The cross assembler runs on your personal, or host, computer, but
creates programs to run on a different chip, such as the 8052. Assemblers for 8051-family
chips, which you can use for 8052 programming, are widely available. Appendix A lists
vendors of assemblers and BBS's from which you can download free and shareware
assemblers.

The Microcontroller Idea Book 219

Chapter 13

Most 8051-family cross-assemblers createfilesin Intel Hex format, whichis convenient for
EPROM programming and uploading to RAM. During the assembly process, if the assem-
bler encounters a program line that is incomplete or not understandable, it will display an
error message describing the problem. The assembler will also createalisting filethat shows
each line of your source file alongside the addresses and machine codes of the object file
and any error messages generated.

Memory for Program Storage

On your BASIC-52 system, you'll need room in external memory for storing your assem-
bly-language routines. Remember that the 8052 has separate control signals for accessing
code and data memory. For uploading into RAM and testing, you must use combined
code/data memory, since you need data memory’s WR signal to write the routine into
memory, and code memory’s PSEN to enable the 8052 to execute the routine.

You can upload routinesinto any unused combined code/datamemory from 2000h to FFFFh.
Code memory from O to 1FFFh is not available, because the 8052-BASIC chip uses these
locations for the BASIC-52 interpreter. If you havea32K RAM addressed at 0 in combined
code/data memory, you can use the area above 1FFFh for storing and testing assembly-lan-
guage routines. For combined data/code memory in Figure 3-1's circuit, move the connec-
tion at pin 22 of U7 from pin 17 of U2 (READ) to pin 3 of U3A (RDANY). With this setup,
however, if you upload your programsinto ordinary RAM, you'’ Il losethem when you power
down.

For more permanent storage, there are several options. You can use a 32K NV RAM, such
as Dallas Semiconductor’s DS1235, or a Dallas 1213C SmartSocket and 62256 SRAM, in
place of ordinary RAM at 0. Although you don’t need battery backup for data memory from
0 to 1FFFh, it does no harm. Again, you must connect RDANY, not READ, to pin 22 of the
NVRAM.

To prevent overwriting your assembly-language routines in RAM when you reboot, set
MTOP to 1FFFh, or another value that is lower than the beginning of your routines, and
execute BASIC-52's PROG3 command, as described in Chapter 3. (You must have NV
memory at 8000h to save MTOR)

If you use a32K NV RAM from 0 to 7FFFh, you should be aware that BASIC-52 reserves
two areas of code memory for optional additions and enhancements. One area, from 2001h
to 2091h, storesinformation that tells BASI C-52 about custom reset routines, keywordsand
other language extensions. Another area, from from 4003h to 41FFh, stores information
about user-defined assembly-language interrupt routines.

If you won't be using these abilities, you can use these areas of memory for other purposes.
However, if a al possible, it'sagood ideato avoid writing to locations 2001h, 2002h, and

220 The Microcontroller Idea Book

Calling Assembly-language Routines

2048h in code memory. This is because BASIC-52 checks these locations on bootup to
determine what additions have been made to BASIC-52. If you by chance have certain data
stored at these locations, BASIC-52 will ook for the additionsit thinks you have, and crash
when it doesn’t find them.

If you have an EPROM addressed at 8000h, and you don’'t need the entire EPROM for
BASIC-52 programs, you can store your assembly-language routines in the unused area.
BASIC-52's (F) PROG command stores programs in sequence beginning at 8010h, so to
leave the most room for BASIC programs, you should place your assembly-language
routines in the EPROM’s highest addresses.

You can also add NVRAM or EPROM in any unused area of combined code/data memory.
For example, you could add an 8K NVRAM addressed from 2000h to 3FFFh, or a 16K
EPROM from 4000h to 7FFFh.

Software for Uploading

You'll aso need a way to load your routines from your personal computer into your
8052-BASIC system’s memory. All that’s required here are your host computer’s commu-
nications software and a BASIC-52 program that reads and stores the uploaded file.

Appendix B contains two such programs. Listing B-1, HEX2RAM.BAS, loads Intel Hex
files from your persona computer into RAM, including NVRAM, in aBASIC-52 system.
Listing B-2, HEXLOAD.BAS, does the same, and also offers the options of loading into
EPROM or EEPROM.

On your host computer, you can the same communications software that you use to upload
BASIC-52 programs, as described in Chapter 3.

Another option for loading routines from your host computer into memory isto program an
EPROM or other device with a device programmer, and then insert the programmed device
into your BASIC-52 system. If you use this method, you can access the chip as code-only
memory, rather than combined code/data memory, since you don’t need to write to it when
it'sinstalled in the 8052-BA SIC system.

Loading a Routine

When you havethe necessary tools, you' re ready to write an assembly-language routineand
assemble, upload, and call, or run, it. Asafirst try, we'll begin with avery simple routine,
just to verify that the circuits and techniques are working.

Listing 13-1 has just one function: it toggles pin 1 (Port 1, bit 0) of the 8052. An ORG
directive tells the assembler the address at which to begin loading the routine. Listing 13-1

The Microcontroller Idea Book 221

Chapter 13

Listing 13-1. Source file for a simple program to test assembly-language
interfacing with BASIC-52.

org 3000h ; location where program will
;load in RAM

cpl pl.0 ;complement Port 1, bit O
; (pin 1)

ret ;return to BASIC-52

end

specifies 3000h. You can change the addressto match whatever locations you have available
inyour system.

The program body’s single instruction complements bit 0 of Port 1, changing it from high
to low or low to high. A ret instruction then returns control to BASIC-52.

To create and test the routine, do the following:

Use atext editor to create afile containing Listing 13-1.
Use your assembler to assemble thefile. A typical command line lookslike this:

A51 bittog.asm -L bittog.lst -0 bittog.hex

The above command tellsthe assembler to create two files: thelisting file bittog.Ist (shown
in Listing 13-2) and the object file bittog.hex, in Intel hex format (shown in Listing 13-3).

File Formats for Assembly-language Routines

Thisisagoodtimeto look at Intel Hex and other fileformatsin greater detail. M ost EPROM
programmers are able to program EPROMs directly from the files created by assemblers
and compilers, but the file must be in a format that the programmer recognizes. Three

Listing 13-2. Listing file created by assembling the source file in Listing 13-1.

3000 org 3000h ; location where program will
;load in RAM

3000 b2 90 cpl pl.0 ;complement Port 1, bit O
; (pin 1)
3002 22 ret ;return to BASIC-52

222 The Microcontroller Idea Book

Calling Assembly-language Routines

Figure 13-1. Examples of a byte expressed in binary, hexadecimal, and the
ASCII codes representing the Hex characters.

Binary value 1100 0101
Hex equivalent C 5
ASCII code for Hex character 43 35

common formats are binary, ASCII Hex, and Intel Hex. Intel Hex isalso the format required
for programsthat you upload using Listings B-1 and B-2. Figure 13-1 showsabyte expressed
in binary, hexadecimal, and ASCII hex.

Binary

A binary fileisthe most primitive or unadorned type. It consists of a sequence of bytes that
exactly corresponds to the bytes to be programmed. The file contains no addressing
information for loading or programming, and no error-checking.

To view or edit abinary file on apersonal computer, you need a special file-viewing utility.
Thisis because conventional file-viewing techniques, suchasMS-DOS's TYPE command,
will interpret the bytes as ASCII codes and will display the ASCII characters that the codes
represent. For example, the value “1" in a binary file appears on-screen as a happy-face
character.

ASCII Hex

In ASCII Hex, or pure Hex, format, each byte is expressed as a 2-character hexadecimal
number, with each character represented by its ASCII code. ASCII Hex files contain only
these 16 codes: 30h through 39h (for numerals 0 through 9) and 41h through 46h (for capital
letters A through F).

You can easily view and edit ASCI 1 Hex files on apersona computer, because the computer
displaysthe ASCII characters that the codes represent. However, the EPROM programmer
or uploading program must translate the codes into binary data before it writes the codes
into the device to be programmed.

Because each byte to be programmed requirestwo codes, an ASCII Hex fileistwice aslong
astheresulting file that is programmed into the EPROM.

Listing 13-3. Intel Hex file created by assembling the source file in Listing
13-1.

:03300000B2902269
:00000001FF

The Microcontroller Idea Book 223

Chapter 13

Intel Hex

Like ASCII Hex, Intel Hex format stores bytes as ASCII codes representing hexadecimal
characters. But Intel Hex adds addressing and error-checking information for more flexible
programming and more reliable file transfer.

Each Intel Hex file consists of a series of records. Table 13-1 has more details about the
records and what they contain. You don’'t have to understand everything about Intel Hex
format in order to useit, but the information can be useful if you run into problems and want
to examine the contents of afile.

Assembling a Program

When you assemble a program, the message Assembly Successful, or something smilar,
means that the assembler found no errors that prevented it from creating the object file. If
you do see error messages, you'll have to find out what's wrong before continuing. The
listing file also includes the error messages, and these should help you track down any
problems.

Table 13-1. An Intel Hex file consists of a series of records , each of which
contains the the six elements below.

Name # Chars Description

Record Mark 1 Each record begins with a colon (:).

Record Length 2 Number of data bytes in the record.

Address Field 2 In data records, the address where the first data byte is to be stored, with

following bytes in sequence. In other record types, 0000.

Record type 2 There are four record types:
00 Data
01 End of File
02 Extended address
03 Start address

Data Field varies Contents depends on the record type:
00 Data to be programmed
01 Not used (empty)
02 Segment. For address fields larger than 64K, data is stored
beginning at (segment+10h)+address field.
03 Start address of program. Often unused.

Checksum 2 To calculate the checksum:
(1) Add the values of all of the bytes in a record.
(2) Take the 2's complement of the result (Complement all bits and
add 1)
(3) The checksum is the low byte of the result.

224 The Microcontroller Idea Book

Calling Assembly-language Routines

Successful assembly isagood sign, but it doesn’t mean that the program is error-free. Asin
any programming language, aline of code may contain instructions that are valid, but that
do not do what you intended. It's a good idea to at least scan the listing created by the
assembler before you try to run aroutine, to look for obvious errors.

Different assemblers may have dightly different syntax rules. For example, some require
org and end to have aleading period (.org, .end). Check your assembler’s documentation
for the specifics.

Uploading a Program

When you' reready to load the program into RAM, boot your 8052-BA SI C system, connect
the serial link to your personal computer, and run your communications software. Use the
software to upload Listing B-1 or B-2, in the same way that you upload any BASIC-52
program from disk.

For loading Intel hex files, you can set up your host computer’s software so that it waitsto
receivetheBASIC-52“>" prompt (A SCII code62) after each uploaded line. Thiswill ensure
that BASIC-52 has enough time to process each line before the next one arrives. Use this
method only with Intel Hex files, not BASIC-52 programs. If aBASIC-52 program contains
any “>" (greater than) operators, the software will think that these indicate the end of a
program line. Intel Hex files contain no “>" characters, so there is no problem.

If you want to wait for the “>" character, in Procomm Plus, from the Setup menu, select
Terminal Options, then Protocol Options, ASCII Options, and set the pace character to 62.
Character pacing and line pacing can be 0. In the Windows terminal, select Settings, then
Text Transfers, One Line at a Time, and enter “>" under Wait for Prompt String. Other
software should have similar abilities.

If you wish, you can use BASIC-52's (F) PROG command to store the program in NV
memory so it’s available without having to upload each time.

To use Listing B-1 or B-2, run the program and, at the prompt, use your communications
software to upload your object file. The file will load into the locations specified by your
source file. The program will display error messagesif it has problems with the uploading.
For proper calculation of the programming-pulse width in Listing B-2, set BASIC-52's
XTAL operator to match your crystal’s frequency.

If the file loads successfully, you're ready to test it. Connect alogic probe to pin 1 on the

8052, or set avoltmeter to measure the voltage from pin 1 to pin 20 (ground) on the chip.
To call your subroutine, enter and run this BASIC-52 program:

The Microcontroller Idea Book 225

Chapter 13

10 CALL 3000h
20 END
If necessary, change the addressin line 10 to match the valuein your routine’s org directive.

Each time you run the program, you should see pin 1 on the 8052 change from high to low
or low to high. The routine should then return you to the BASIC-52 prompt.

If the program crashes and does not return you to BASIC-52, you need to re-examine your
listing file to see what went wrong. Remember that the address in BASIC-52's CALL

£12V
9 120
 7[,, RFB VCC
Slpy
70 510, _ul [QK
- DAC832
OUTPUT | A4ln< . Lok , H12v
PORT 161y [OUT I » ~J8
(E400H) | 15]pg 7S LM385-2.5 L|u2A 1
%?—D6 [0UT?2 REFERENCE 14
L 13155 — VOLTAGE S
19 8 /2 LF353
+5V O— ILE VREF CUFFER
s
2l WRT
L8 Wr2
+LJIXFER 1 0K
- GND GND
3 |le
- VouT
DIGITAL -TO-ANALOG CONVERTER
0. 001 uF
© *2.5V — 1/2 LF353
FILTER
BOTTOM VIEW 22 .5y

M385-2.
- 720 VOUT

Figure 13-2. By writing the appropriate values to an output port, you can
cause a sine wave to appear at vour.

226 The Microcontroller Idea Book

Calling Assembly-language Routines

statement must match the address in your file's org directive. A missing ret instruction in
the routine will also cause the system to crash.

Example: Creating a Sine Wave

When you have the ssimple routine working, you' re ready to move on to bigger things. For
the sine-wave project, we'll begin by generating a sine wave entirely with BASIC-52
statements. Thisway, wecan first test theadded circuitsaswell asthe algorithm, or sequence
of steps, that we plan to use to generate the sine wave. It aso illustrates the speed limits of
BASIC-52.

The Circuits

Figure 13-2 shows the circuit that interfaces to the 8052. | adapted the circuit from an
examplein National Semiconductor’s data sheet for the DAC0832.

Ul isaDACO0832 digital-to-analog converter, or DAC, which converts data inputs DO-D7

into an analog voltage. DO-D7 are controlled by an output port at E400h. You may change
this address to match any output port on your system.

Listing 13-4. Sine-wave generator for Figure 13-2’s circuit.

10 REM Begins by calculating and storing sine values
20 REM for 256 locations along a sine wave.
30 REM Line 100 converts a position in the sine wave

40 REM (0-255) to the radians required by the sine

50 REM operator: (0.0246 = 2*PI/256). Adding 1 to the
60 REM sines makes all values positive, from 0 to +2.
70 REM Multiplying by 127.5 results in values that

80 REM range from 0 to 255.

90 FOR I=0 TO 255

100 XBY(3000H+I)=INT((SIN(I*.0246)+1)*127.5+.5)

110 NEXT I

120 PRINT “Sine values are stored in RAM (3000h-30FFh)”
130 PRINT “Press Control+C to quit”

140 REM Write the values in sequence to E400h

150 DO

160 FOR I=3000H TO 30FFH

170 XBY(OE400H)=XBY (I)

180 NEXT I

190 WHILE 1=1

200 END

The Microcontroller Idea Book 227

Chapter 13

The DAC is configured in its flow-through and voltage-switching modes. In flow-through
mode, the analog output continuoudly reflects the data inputs. The chip has several control
signalsfor latching inputs and outputs, but these aren’t needed by our circuit.

In voltage-switching mode, the analog output is a voltage proportional to the value of the
byte formed by D0-D7. An LM385 2.5-volt reference is applied across current output
terminalsiouT1 and I0UT2, and the output appearsat VREF. (Thisconfigurationistheinverse
of the device's current-switching mode, where VREF is an input and 10UT1 and 10UT2 are
outputs, as their names suggest.)

Op amp U2A buffers the output, and U2B is alow-passfilter that helps to smooth VOUT.
A BASIC Program

Listing 13-4 causes a Sine wave to appear at VOUT. The sine wave represents the value of
the trigonometric sine function for an angle that varies continuously from O to 360 degrees,
or 0to0 6.28 (2*P1) radians. Lines 90-110 are a loop that selects 256 equally-spaced points
along one cycle of the sine wave, calculatesthe sinefor each, and storesthe valuesin RAM.
Theprogram uses BASIC-52'sS TN operator in calculating thevalues. Sinevaluesnormally
vary from +1 to -1, but line 100 adjusts the values so that they vary from 0 to 255, whichis
the range of inputs accepted by the 8-bit DAC. Using these values, 0 is the negative peak,
255 isthe positive peak, and the zero crossing occurs midway between points 127 and 128.

To generate the sine wave, Lines 150-180 are aloop that reads each value in sequence from
RAM and writesit to an output port at E400h. After writing a complete cycle, the program
loops back and begins another. The sine wave repeats endlessly, until the user presses
CONTROL+C.

Listing 13-4 creates a perfectly good sine wave, but at a very low frequency. Using
12-Megahertz crystal to clock the 8052, thefrequency isonly about 0.7 Hertz, or 1.5 seconds
per cycle.

Adding Assembly Language

To speed thingsup, Listing 13-5isan assembly-language routinethat performsthe functions
of lines 150-180 in Listing 13-4. Asin the original program, Listing 13-5 copies valuesin
sequence from RAM to E400h, repeating the sequence after 256 writes. The routine
illustrates a couple of major differences between BASIC and assembly-language program-
ming.

One is that assembly language has no built-in FOR, DO, or WHILE loops. Instead, you
haveto createloop structuresfrom theinstructions available. Listing 13-5 creates a 256-step

228 The Microcontroller Idea Book

Calling Assembly-language Routines

Listing 13-5. Assembly-language sine-wave routine for Figure 13-2’s circuit..

;Reads and copies values in sequence from locations 3000h
;to 30FFh to E400h. A DAC0832 generates a sine wave from

; the values.

;A keypress terminates the routine and returns to BASIC-52.

org 3100h

OutputPort equ 0ed400h

;Begin generating the sine wave:

nextcycle mov 20h, #0ffh

nextvalue mov

dph, #30h

mov dpl, 20h

movx a,@dptr

mov dptr, #OutputPort

movx @dptr,a

djnz 20h,nextvalue

jb ri,return

sjmp nextcycle

;Return to BASIC-52:
return clr ri
ret

end

The Microcontroller Idea Book

; load routine above the
;stored values

;address of port to write
;sine values to

;store initial count at 20h
;in internal

;data memory

;put high byte of sine wave
;address (30h)

;in dptr

;copy low byte of sine wave
;address from 20h to dptr
;place sine wave value in
;acc.

;copy port address
;Lo dptr

;copy sine wave value to
;output port

;do another if count > 0
;after writing one complete
;cycle, check serial receive
;flag and quit if set

;1f serial flag not set,
;begin another cycle

;clear serial receive flag
;return to BASIC

229

Chapter 13

FOR loop by loading FFh into register dpl (the lower byte of dptr), and decrementing dpl
repeatedly until it equals zero.

In assembly language, you also do not have built-in conveniences like BASIC-52's ability
to terminate a program on CONTROL+C. You have to add these features yourself. In Listing
13-5, after each complete cycle of the sinewave, the program checksthe serial port’sreceive
flag. If the flag is set, it means that the user has pressed a key, and the program returns to
the BASIC-52 prompt. Otherwise, the program begins another cycle of the sine wave.

To run Ligting 13-5, create a source file with your text editor, assemble it, and upload it to
RAM as before. Edit Listing 13-4 by removing lines 150-180 and adding this line:

150 CALL 3100h

Now when you run Listing 13-4, you should again see a sine wave at VOUT, but at a much
higher frequency.

With a12-Megahertz crystal, the sine wave should be around 350 Hertz, or 2.8 milliseconds
per cycle. You can verify thisby consulting the 8052’s data book, which tellsthe number of
machine cycles required to execute each instruction. At 12 Megahertz, each machine cycle
is1 microsecond, and one complete cycle requires 11 microseconds multiplied by 255 points
on the wave, plus 6 microseconds to test the serial flag, or 2811 microseconds total.

With different crystal frequencies, the output frequency will vary in direct proportion. For
example, with a6-Megahertz crystal, the sine wave will be half as fast.

Toslow down thesinewave, you can add “ do-nothing” instructionsto the code. For example
adding anop (no operation) instruction in the main loop will add 1 microsecond to thetime
between points on the wave, for afrequency of 326 Hertz. For long delays, you can insert
atiming loop that executes after each point in the wave.

Listing 13-5 still relies on BASIC-52 to calculate the sine values and store them in RAM.
Although you can aso write these parts in assembly language, doing soin BASIC ismuch
easier, and doesn't affect the frequency of the sinewave that results. Even if you later decide
towritethispart in assembly language, with BASIC-52 you can test each section of the code
asyou go along.

When you have your assembly-language routinein theform you want it, you can use Listing
B-2 or an EPROM programmer to store the code in EPROM. If your EPROM has different
addressing than the RAM you used to test the code, you must change the ORG directive in
the sourcefile to match the new location, and reassemble the file before you program it into
the EPROM.

230 The Microcontroller Idea Book

Calling Assembly-language Routines

Avoiding Program Crashes

It'svery easy to write an assembly-language program that crashes the system and forcesyou
to reboot. To prevent this, you haveto take care that your routines do not interfere with each
other, or with BASIC-52. Remember that BASIC-52 isaprograminitself, and it uses many
of theregisters and other memory locations, both inside and outside of the 8052, for itsown
purposes.

For example, BASIC-52 uses locations 13h and 14h in internal RAM to store the starting
address of the current BASIC program in external RAM. If you overwrite these values,
BASIC-52 will no longer be able to find your program.

The BASIC-52 programming manuals list the registers and other memory addresses used
by BASIC. In general, you should avoid writing to these locations, unless you know what
you'’ re doing and how to deal with the results.

Often, an assembly-language routine will ater some of the 8052's registers. You are
responsible for seeing that all critical values are unchanged when the routine returns control
tothe programthat called it, whether it's BASI C-52 or another assembly-language program.

The stack is a convenient way to preserve values on entering aroutine, and to restore them
on exiting. The stack is a special area of memory with alast-in, first-out structure, which
means that you read values from the stack in the reverse order that you wrote them. Storing
valuesin the stack areais called pushing, or placing, values on the stack. Retrieving values
from the stack areais called popping them off the stack.

Assembly language has push and pop instructions for accessing the stack. (BASIC-52's
PUSH and POP instructions access a separate area called the argument stack.)

You can also preserve values by selecting a unique register bank for use by a routine. The
8052 has 32 registersarranged in four banks of eight, from 0 to 1Fhin internal datamemory.
You can access the registers by specifying the address, or by selecting a register bank and
specifying aregister from RO to R7 within the bank. For example, if bank 0 is selected, RO
islocation 00h, but if bank 1 is selected, RO islocation 08h.

BASIC-52 uses banks O, 1, and 2, but uses bank 3 only with the PGM instruction, so this
bank is usually free for other uses. Bits 3 and 4 of the 8052’s program status word (psw)
select the register bank. When you call an assembly-language routine, BASIC-52 automat-
icaly selects register bank 0. To select bank 3, add this to the beginning of your routine:

push psw ; save program status word
orl psw, #18h ;select register bank 3

The Microcontroller Idea Book 231

Chapter 13

Listing 13-6. This assembly-language routine is similar to Listing 13-1,
except that external interrupt 1 causes the routine to run.

;On external interrupt 1, Port 1, bit 0 is complemented

org 4013h ;vector for external
;interrupt 1

cpl pl.0 ;complement Port 1, bit O
; (pin 1)

pop psw ;push psw was automatic on
;interrupt,
;but pop psw must be added

reti

end

and add this to the end, before returning to BASIC-52:
pop psw ;restore program status word

Your routine can then write to registers RO-R7 without worrying about conflicting with
BASIC.

Interrupts

BASIC-52 also includes a way of adding assembly-language routines that respond to
interrupts. Normally, the 8052 stores its interrupt vectors (the locations where the program
jumps on interrupts) from 03h to 2Bh in code memory. Since these locationsarein ROM in
the 8052-BASIC, your programs can’t changetheir contents. But builtinto BASIC-52isthe
ability to place alternate interrupt routines from 4003h to 402Bh.

Toillustrate, Listing 13-6 is an assembly-language interrupt routine. The routine’soriginis
4013h, which is BASIC-52's dternate vector for external interrupt 1. The interrupt routine
has the same function as Listing 13-1. It toggles bit O of Port 1, then returns to BASIC-52.

These are afew things of note about Listing 13-6:
e Y ou must have code memory at 4013h, since BASIC-52 specifies that this location
must contain either the interrupt routine or ajump to alonger routine. If theroutine is

longer than 8 bytes, use ajump instruction, such as sjmp 4033h, to prevent overwriting
any interrupt vectors that follow.

232 The Microcontroller Idea Book

Calling Assembly-language Routines

¢BASIC-52'sON EX1 instruction will also respond to external interrupt 1, but the
response time will be much slower. ON ExX1 has priority, however, and Listing 13-6
will not executeif an ON EX1 statement has executed in BASIC-52.

¢ \When BASIC-52 jumps to an assembly-language interrupt routine, it automatically
pushes psw on the stack. But popping psw on returning from the interrupt routine is not
automatic, so theinterrupt routine must include an instruction to do so.

¢ Unlike other subroutines, which end with ret, interrupt routines must end with reti.

Totest Listing 13-6, upload it to RAM at 4013h, and execute these two lines of BASIC-52
code, to ensure that the interrupt is enabled:

IE=IE.OR.84h
TCON=TCON.OR.04h

Now, each time pin 13 goes low, pin 1 should toggle, asit did with Listing 13-1.

Adding Custom Commands and Instructions

Another feature of BASIC-52 is the ability to add up to 16 custom keywords representing
commands or instructions that you define with assembly-language routines. Listing 13-7 is
an example program for doing so.

To add custom keywords, you must have code memory from 2000h to 2071h, because
BASIC-52 looks for special information at several addressesin this area.

On bootup, BA SIC-52 examinesthe data at address 2048h. If bit 5isset, BASIC-52 assumes
that you have added custom keywords, and it looks for additional information in a token
table and vector table.

At 2078h, BASIC-52 expects to find the starting address of a token table, which lists your
new keywords. At 2070h, it expects the starting address of a vector table, which lists the
assembly-language routines that the new keywords execute.

You may upload both tablesto any free area of combined code/data memory. If you' reusing
an external EPROM programmer, you can use code-only memory in the 8052-BASIC
system.

In the token table, each new keyword is assigned a number, in sequence from 10h to 1Fh.
The name of the keyword is surrounded by quotation marks, and a0 indicatesthe end of the
token. The final keyword in the list ends in OFFh, to signify the end of the list of tokens.
Listing 13-7 adds three keywords, which toggle, set, and clear bit O of Port 1.

The Microcontroller Idea Book 233

Chapter 13

Listing 13-7. (page 1 of 2) Creates instructions to set, clear, and toggle Port
1, bit 0 in BASIC-52.

;example program for creating custom commands and instruc-
tions in BASIC-52
;system must contain code memory from 2000h-2079h

tokentable equ 2100h ;start address, token table
vectortable equ 2200h ;start address, vector table
org 2002h ;5Ah at 2002h tells BASIC-52
db 5ah ;to call 2048h (see below)
org 2048h ;Set bit 45 to tell BASIC-52
; that custom commands or
setb 45 ;instructions have been
ret ; added
org 2078h ;stores starting address of
mov dptr, #ttokentable token table
ret
org 2070h ;stores starting address of
mov dptr, #vectortable vector table
ret
org tokentable ;token table start address
db 10h ; first user-defined token
db “TGGP10" ;command or instruction name

; (must use all capital
;letters, beginning
;combination of letters
;must be unique)

db 0 ;end of token indicator

db 11h ; 2nd user-defined token

db “SETP10O" ;command or instruction name
db 0 ;end of token indicator

db 12h ;final user-defined token

db “CLRP1O" ;command or instruction name
db Ofth ;end of list indicator

234 The Microcontroller Idea Book

Calling Assembly-language Routines

Listing 13-7. (page 2 of 2)

;can add up to 1Fh tokens
;final token must end with O0ffh

org vectortable ;vector table address

dw tggpl0 ;label to branch to on
; TGGP10 command

dw setplO ;label to branch to on
; SETP10 command

dw clrplO ;label to branch to on

; CLRP10 command

tggpl0 org 3000h ;use any available address
cpl pl.0 ;complement Port 1, bit 0
; (pin 1)
ret ;return to BASIC-52
setpl0 org 3010h ;use any available address
setb pl.0 ;set Port 1, bit 0 (pin 1)
ret ;return to BASIC-52
clrpl0 org 3020h ;use any available address
clr pl.0 ;clear Port 1, bit 0 (pin 1)
ret ;return to BASIC-52
end

The vector table consists of a list of labels corresponding to the beginning of each
assembly-language routine.

In addition to the tables, you must store the assembly-language routines themselves, again
using any free code/data or code memory.

To use Listing 13-7, you must assemble it and upload the resulting Intel Hex file into NV
memory that will be preserved on powering down or rebooting. Reboot, and you can use
the new keywords TGGP10, SETP10, and CLRP10 to control bit O of Port 1. (Notice that
the “bit-toggle” keyword is TGGP10, rather than TOGP10, which contains the keyword TO
and so won't work.)

The Microcontroller Idea Book 235

Chapter 13

Listing 13-8. (page 1 of 2) Copies data from external memory into EPROM,
EEPROM, or NV RAM.

10
20
30
40
50
60

70
80
90
100
110
120

130
140
150

160
170
180

190
200

210
220

230
240

250
260

270
280
290
300

236

PRINT “enter device type: ”
PRINT “EPROM 50-msec "
PRINT “EPROM Intelligent 2"
PRINT “EEPROM or NV RAM 3"
PRINT “quit 4"
INPUT T

REM set pulse width for device type
REM W = pulse width in milliseconds
IF T=1 THEN W=.05

IF T=2 THEN W=.001

IF T=3 THEN W=.0005

IF T=4 THEN GOTO 470

REM calculate and store pulse width
B=(65536- (W*XTAL/12)) : GOSUB 500
DBY (40H)=BH : DBY (41H)=BL

REM set up for intelligent programming or not
I=DBY (26H)
IF W=.001 THEN DBY (26H)=I.0R.8 ELSE DBY(26H)=I.AND.OF7H

INPUT “starting address of data to copy (source)? ”,S
IF S<200H OR S>0FFFFH THEN GOTO 190

INPUT “ending address of data to copy (source)? ”,E
IF E<S OR E>OFFFFH THEN GOTO 210

INPUT “starting address to program (destination)? ”,P
IF P<MTOP OR P>0FFFFH THEN GOTO 230

REM calculate and store number of bytes to program
B=(E-S)+1 : GOSUB 500 : DBY(1FH)=BH : DBY (1lEH)=BL

REM store starting address of destination-1

B=P-1 : GOSUB 500 : DBY(1AH)=BH : DBY (18H)=BL
PHO. “eprom low = ”,BL
PHO. “eprom high = ”,BH

The Microcontroller Idea Book

Calling Assembly-language Routines

Listing 13-8. (page 2 of 2)

310 REM store starting address of source

320 B=S GOSUB 500 : DBY(1BH)=BH : DBY(19H)=BL
330 PHO. “ram low = ”,BL
340 PHO. “ram high = ”,BH

350 PRINT ‘“press ENTER to begin programming”
360 X=GET : IF X<>0DH THEN 360

370 REM program the EPROM
380 PRINT “programming in progress...”
390 PGM

400 REM check for errors

410 IF (DBY(1EH) .OR.DBY(1FH))=0 THEN PRINT “programming OK”
GOTO 470

420 REM on error, calculate address that failed to program

430 DC=DBY (19H)+256*DBY (1BH) -1

440 PHO. “ERROR: Source address "m,DC," = “,XBY(DC)
450 DP=DBY (18H)+256*DBY (1AH)

460 PHO. ™ Destination address ”,DP," = “,XBY(DP)
470 END

500 REM separate B into high (BH) and low (BL) bytes
510 BL=(B.AND.OFFH)

520 BH=INT(B/256)

530 RETURN

A General-purpose EPROM Programmer

With Listing B-2, you can use an 8052-BASIC system as a general-purpose programmer
for EPROM, EEPROM, or NV RAM. The program will read any file in Intel Hex format,
and store it at the addresses specified in thefile.

For example, you can add a socket for an 8K EPROM, EEPROM, or NV RAM addressed
at AOOOh-BFFFh in combined code/data memory. For EEPROM or NVRAM, wire the
socket exactly like U8 in Figure 4-3, except wire pin 1 of U9 to chip-select AOOOh (pin 10
of U6 in Figure 3-1) instead of to 8000h. For EPROM programming, also connect Figure
4-5'scircuits to pins 1 and 28 of the EPROM, for the programming voltages.

The Microcontroller Idea Book 237

Chapter 13

With these added components and Listing B-2, you can program a DS1225 NV RAM, a
28(C)64 EEPROM, or a 27(C)64 EPROM with an Intel Hex file.

One use would beto program an EPROM for anon-BASIC-52 system, whereEA istied low
and on bootup, the 8052 runs a program beginning at 0 in external code memory, instead of
running the BASIC-52 interpreter in internal ROM. For this use, you must add A0OOOh to
the values given in all ORG directives. For example, you would change ORG 0 to ORG
A000h, and change ORG 200h to ORG A200h. You can then use Listing B-2 to copy the
program into the EPROM at A00Oh, remove the EPROM and install it at O in code memory
in your non-BASIC-52 system. On bootup, the 8052 will run the program in EPROM.

Another Way to Program EPROMs

Listing 13-8 is another program that you can use to copy information from external data
memory into an EPROM, EEPROM, or NVRAM. To use this program, you must specify
the locations to copy (the source), the locations to copy to (the destination), and the device
type to copy to. The program does the rest. With this program, you can copy information
directly from RAM or other memory to another device, without uploading or trandating to
Intel Hex format.

The program prompts you for and stores information about the programming agorithm and

addresses to program and copy from. BASIC-52's PGM instruction then uses thisinforma-
tion to program the selected locations.

238 The Microcontroller Idea Book

Running BASIC-52 from External Memory

14

Running BASIC-52 from External
Memory

Most BASIC-52 circuitsusethe8052-BA SIC chipwiththe BASIC-52 interpreter ininternal
ROM. Thisis convenient, but another option is to place BASIC-52 in externa EPROM,
EEPROM, or NV RAM. Two reasons for doing so are to save money and to enable you to
customize BASIC-52 by modifying and reassembling BASIC-52's source file.

For those who want to experiment with BASIC-52 in external memory, this chapter shows
how to copy the BASIC-52 interpreter from ROM into NV RAM, and how to design and
use a system with BASIC-52 in external memory.

Reasons

Placing BASIC-52 in externa memory can save money, although as prices for the 8052-
BASIC chip have dropped, the savings have become minimal. Still, if you find a good deal
on 8032s or 8052s and 8K EPROM s, you might find it worthwhile to build systems with
theserather than using the single-chip 8052-BASIC. Inyour cal culations, though, remember
that sockets and board space add cost, not to mention the extra time involved in wiring or
laying out a printed-circuit board for the added component.

The Microcontroller Idea Book 239

Chapter 14

For experienced assembly-language programmers, another reason for placing BASIC-52in
external memory is so that you can modify the source file for BASIC-52. You then can
reassemble your modified source file and use the new version in your projects. In thisway,
you can add functions or make other changes to BASIC-52 itself. To do this, you must have
acopy of BASIC-52's source code, which has been available on Intel’s and Philips' BBS's,
plus Intel’s ASM51 or a compatible 8051-family assembler.

lota Systems is one vendor that has customized BASIC-52 in this way, with an expanded
BASIC-52 PLUSthat runsfrom external EPROM on lota’s8052-BASIC boards. BASIC-52
PLUS includes commands for uploading and downloading Intel Hex files, as well as other
enhancements and bug fixes.

Copying BASIC-52

To copy BASIC-52 from ROM to NVRAM, you can use the same circuits shown in Figures
3-1and 4-3. Use aDS1225 8K NV RAM at U8. Listing 14-1 is a program that copies the
8052-BASIC's ROM from 0 to 1FFFh in internal code memory to U8 at 8000-9FFFh in
external data or code/data memory. Boot up your system, enter or upload Listing 14-1 and
run it. Then power down and remove the NV RAM at U8, which now contains a copy of
BASIC-52.

If you prefer, you can use a 28(C)64 8K EEPROM instead of NV RAM at U8. Because the
write-cycle time of EEPROMSs s often 2 to 10 milliseconds, you may have to slow Listing

Listing 14-1. Copies the BASIC-52 interpreter program from ROM to
NVRAM.

10 PRINT “copying BASIC-52 from ROM to RAM at 8000h...~"
20 FOR I=0 TO 1FFFH

30 XBY (I+8000H)=CBY(I)

40 NEXT T

50 PRINT “verifying...”

60 X=0

70 FOR I=0 TO 1FFFH

80 IF XBY(I+8000H)<>CBY(I) THEN GOSUB 120

90 NEXT T

100 IF X=0 THEN PRINT “Copy successful”

110 END
120 PHO. “Error at location ”,I
130 X=1

140 RETURN

240 The Microcontroller Idea Book

Running BASIC-52 from External Memory

14-1 for longer delays between writes. To do so, between lines 30 and 40, add this or a
similar “do-nothing” loop: FOR J=1 to 10:NEXT J.

For EPROM storage, you can copy theROM into RAM and then use Listing 13-8 to program
an EPROM. For this method, use a 32K RAM at U7 in Figure 3-1. You'll also need an
unprogrammed 8K EPROM accessed as data or code/datamemory. Set MTOP to 5SFFFh or
lower to ensure that BASIC-52 won't overwrite the area from 6000h to 7FFFh. In Listing
14-1, lines 10, 30, and 80, change 8000h to 6000h. Run therevised program to copy the
8052-BASIC’'sROM into RAM at 6000h-7FFFh. You then can upload or enter Listing 13-8
to copy BASIC-52 into your EPROM, at the starting address you specify.

Another option is to use an EPROM programmer to copy BASIC-52. If your programmer
has an adapter for 8051s, you can copy the 8052-BASIC’'s ROM directly into the program-
mer’s buffer and then program an EPROM, EEPROM, or NV RAM with the buffer’s
contents. If you don’'t have an adapter, you can use the technique described above to copy
BASIC-52 into NV RAM or EEPROM, and then read the device into your programme.

To read a DS1225 into an EPROM programmer’s buffer, configure the programmer for a
DS1225 or 2764 EPROM, since the pinouts for reading these devices are the same. Place
the DS1225 in the programming socket and read the contents into the programmer’s buffer.
Be sure not to subject the DS1225 to any EPROM programming voltages (by trying to
program the device as an EPROM, for example), since this could be lethdl to it.

After reading the DS1225, insert a2764 EPROM into the programming socket, and program
the EPROM with the buffer’s contents. You now have an EPROM with the same contents
asyour NV RAM.

System Requirements
To run BASIC-52 from external memory, your circuit must include the following:

e Any 8052, 8032, 80C52, or 80C32 chip, with pin 31 tied low.

¢ BASIC-52 stored in non-volatile memory (NVRAM, EEPROM, or EPROM),
beginning at 0 in code memory.

e At least 1K of read/write memory (RAM), beginning at O in data memory (required for
all BASIC-52 systems).

¢ For permanent storage of BASIC-52 programs, non-volatile memory beginning at
8000h in data or code/data memory.

One limitation to running BASIC-52 from external memory is that you can’t use PROG,

FPROG, or PGM. Thisis because during programming, BASIC-52 accesses the address bus
as ports, but when BASIC-52 runs from external memory, the 8032 needs the address bus

The Microcontroller Idea Book 241

Chapter 14

to access BASIC-52. But you can store programs in NV RAM or EEPROM, using a
BASIC-52 program presented later in this chapter.

For the external-BA SIC-52 system, you can use the same circuits asin Figures 3-1 and 4-3,
plus Figure 14-1, which adds the chip containing BASIC-52.

DATA BUS (D@-D7)

N\
DS1225 NVRAM
OR
LOW ADDRESS BUS 2864 EEPROM
(AQ-A7)
\ OR
27(C)64 8K EPROM
HIGH ADDRESS BUS A0 10 [DO
(A8-A15) Al 9| 7ol DI
\ Al 1/02 —————
A2 8 13 D2
A2 1/03 ——— =2
A3 7 15 D3
A3 1/04 "
A4 6 16 D4
A4 1/05 f—
A5 5 17 D5
A5 1/06 —2
A6 4 18 D6
A7 3| L7079 D7
A7 1/08 b———F—
A8 25
A9 24 22 26
Ale 211, I
ALL 2310 N
Al2 2
Al2 i5y
0000H —2 1l 20| — 7
RESET 13)U9D CS1 vec 28
74HCT 32 +5YV
T_27_W_E T
0. luF
- PSEN 22108 GNDH

8K NV MEMORY -

Figure 14-1. Added circuits for storing BASIC-52 in external code memory.

242 The Microcontroller Idea Book

Running BASIC-52 from External Memory

In Figure 3-1, tie pin 31 of U2 (EA) to ground instead of +5V, so that the 8032 boots to
externa memory instead of internal ROM.

Sinceyou aren’'t using the programming functions, you can eliminate some components and
free up three port pins for other uses. First, you don’'t need an AND gate to combine ALE
and ALEDIS, so you can wire ALE (U2, pin 30) directly to LE (U4, pin 11). You can also
eliminate R2-R9. Plus, in Figure 4-3, you can eliminate AND gate U3C, and wire WRITE
(U2, pin 16) directly to WE (U8, pin 27).

If you make these changes, bits 4 and 5 of Port 1 are free for any use you want. And, since
NVRAM requires no programming voltage, bit 3 of Port 1 isalso freefor other uses. If you
don’t make the changes, you can still run BASIC-52 from external memory, but if you try
to use PROG, FPROG, or PGM, the system will crash. (You can aso make these changes
in a circuit that uses an 8052-BASIC, to free up some port pins if you use the program
described below instead of the programming commands.)

U2 can be any 80(C)32 or 80(C)52. U7 can be an 8K or 32K static RAM, addressed
beginning at 0 in data memory.

Figure 14-1 showsthewiring for NVRAM, EPROM, or EEPROM that containsBA S| C-52.
This chip is accessed from O to 1FFFh in external code memory.

U8isNVRAM accessed from 8000h to 9FFFh in combined code/data memory, for storing
BASIC-52 programs and assembly-language routines.

Storing BASIC-52 Programs

With BASIC-52 in external memory, you can’t use the built-in programming functions, but
there is another way to store programs. Using the circuits described above, write and test
your BASIC-52 programs as usual. When you want to store a program permanently, append
the codein Listing 14-2 to your program. The code is shown beginning at line 9000, but it
can begin at any line number after the END statement in the program you want to save.

To store aprogram in U8, type GOTO 9000, where 9000 is the line number where Listing
14-2 begins, and follow the on-screen instructions.

Listing 14-2 hasdl of the abilitiesof PROG1 - PROG6, including auto-execute on power-up,
setting the baud rate, and saving MTOP. Line 8990 indicates the end of the program you
want to save. Lines 9000-9040 prompt you to pressP to copy the current BASIC-52 program
to NVRAM at U8, or press Q to quit. Line 9050 writes 55h to NVRAM, which indicates to
theinterpreter that a BASIC program follows. Lines 9060-9080 copy the current BASIC-52
program, which is stored beginning at 200h in external datamemory (U7), to NV RAM (U8)
beginning at 8011h. Listing 14-2 is also copied as part of the current program. Lines

The Microcontroller Idea Book 243

Chapter 14

Listing 14-2. Simulates BASIC-52's PROG and PROG1-6 commands, for
systems with BASIC-52 in external memory or systems that do not use the pem
puLse signal. Adapted and reprinted with permission from Micromint.

8990 END

9000 PRINT “Press 'P’ to copy the current BASIC program to
RAM at 8000h.~"

9010 PRINT “Press 'Q’ to quit.”

9020 G=GET

9030 G=GET : IF G=0 THEN 9030

9040 IF (G<>80.AND.G<>112) THEN END

9050 XBY(8010H)=55H

9060 FOR X=200H TO (200H+LEN)

9070 XBY (X+7E11H)=XBY (X)

9080 NEXT X

9090 PRINT “Press a number from 1 to 6 to do PROG1-PROG6.”

9100 PRINT “Press 'Q’ to quit.”

9110 G=GET

9120 G=GET : IF G=0 THEN 9120

9130 IF (G<49.0R.G>54) THEN END

9140 XBY(8000H) =G

9150 XBY(8001H)=INT (RCAP2/256)

9160 XBY (8002H)=RCAP2- (XBY (8001H) *256)

9170 IF G<50 THEN END

9180 XBY(8003H)=INT (MTOP/256)

9190 XBY(8004H)=MTOP- (XBY (8003H) *256)

9200 END

9090-9130 prompt you to press a number from 1 to 6 to simulate a PROG1-PROG6
command, or to press Q to quit. Lines 9140-9190 storethe PROG value (1-6), RCAP2 (for
saving the baud rate), and MTOP, as requested.

Listing 14-2 stores only the current program, not multiple programs like the PROG com-
mand. But you can store anew program whenever you wish by writing over the previously
stored program. And you don’t have to worry about removing and erasing an EPROM when
it'sfilled.

If you have a 32K RAM at O, remember to set MTOP to 7FFFh and use Listing 14-2 to
executea PROG3, to ensurethat your NV RAM won't be overwritten on bootup.

You can use EEPROM with Listing 14-2, if you add a delay |oop after each write operation
using XBY, asdescribed for Listing 14-1.

244 The Microcontroller Idea Book

Related Products

15

Related Products

Because of the popularity of the 8052-BASIC chip, many companies have developed
products to simplify the tasks of designing, building, and testing BASIC-52 systems. This
chapter describes some of the offerings in these aress.

Enhanced BASIC-52

The BASIC-52 interpreter contained in the original 8052-BASIC is a good, full-featured
and easy-to-use programming language. However, Intel hasn't updated the program since
version 1.1. Fortunately, other programmers have taken on the task of improving and
enhancing the language.

MDL Labs MDL-BASIC is an EPROM that contains an enhanced version of BAS C-52.
It includes new operators that set and clear individua bits in memory, increment and
decrement values, and return the remainder in integer division. MDL-BASIC also has
improvements for faster loading and running of programs, and fixes many of BASIC-52's
bugs, such as the problem with variable names beginning with F (see Chapter 5). It requires
a system that can operate with BASIC in external memory, as described in Chapter 14.

Other vendors, including Blue Earth Research and Micromint, have improved and added to
the BASIC-52 interpreter as well.

The Microcontroller Idea Book 245

Chapter 15

BASIC compilers

A BASIC compiler offers a middle ground between the BASIC-52 interpreter and assem-
bly-language programming. With a BASIC compiler, you write your programs using the
familiar keywords and syntax rules of BASIC, but the compiled programsrun on their own,
without requiring the BASIC-52 interpreter. Binary Technology, Systronix, and Blue Earth
are three vendors of BASIC compilers for the 8052.

As with assembly language, to use aBASIC compiler, you first write a source file, using
any text editor. But instead of using assembly-language mnemonics, you write the source
fileusing the BASIC compiler’s keywords and conventions. When the program iscompl ete,
the compiler program trandates your program lines into the machine codes required by the
8052 chip. Thecompilerswill create an object file, usualy in Intel Hex format, for uploading
or programming into EPROM, plus a listing file for documentation and debugging use.
When the object file is stored in the 8052's code memory, the 8052 can run the program
directly, without having to use the BASIC-52 interpreter.

Using acompiler has severa advantages:

¢ Unlike with assembly language, the syntax used with BASIC compilersis similar to
BASIC-52. This means that you don’t have to learn anew programming language. In
fact, you can usually use the BASIC-52 interpreter to test your code before you compile
it. You can aso use BASIC-52 for loading and debugging your compiled programs, as
described in Chapter 13.

e A compiled BASIC program will run faster than an interpreted BASIC-52 program.
The speed increase depends on the program, but programs that run 20 to 50 percent
faster are typical.

¢ Because a compiler doesn’t limit you to the 8052-BA SIC chip, you can develop
programs for other members of the 8051 family. For example, Systronix’sBASIC
compiler has optional language extensions for Dallas Semiconductor’s DS5000
8051-compatible microcontroller.

A disadvantage to using acompiler rather than an interpreter isthat you have the extra steps
of compiling and uploading programs before you can run them. But because the BASIC-52
language is so similar to the compilers, you can do alot of your testing with the interpreter,
and use the compiled version for final testing only.

There's aso the added expense of buying the compiler. But if you develop many different

projects, or if you need many copies of asingle project, the compiler can end up saving you
money, since you can use 8032 chips instead of the more expensive 8052-BASICs.

246 The Microcontroller Idea Book

Related Products

Finally, acompiled BASIC program usually requires more memory than an interpreted one,
but you do gain 8 kilobytes of code memory because you no longer need the BASIC-52
interpreter.

Programming Environments

If you like the convenience of the BASIC-52 interpreter, but would like features that make
it easier to write, edit, and store your programs, there are aternatives here as well.

MDL Labs and MicroFuture are two sources for development environments, which are
programs that typically include communications and program-editing abilities. Most run on
| BM-compatible host computers. Figure 15-1 shows atypical screen.

The environments include features like these:

¢ Block editing, or the ability to move, delete, or copy blocks of text in one operation.
¢ The ability to refer to subroutines by name, rather than by line number.

E?ﬂl COMMAND
10 PRINT “PORT 1 Bit Ualues:"
20 PRINT "Bit 0@ = “,(PORT1.AND.1)
30 PRINT VBit 1 = ", (PORT1.AND.2)/2
40 PRINT “Bit 2 = ", (PORT1.AND.4)/4 List Program from 8052
50 PRINT “Bit 3 = ', (PORT1.AND.B).8
60 PRINT "Bit 4 = “,(PORT1.AND.16H) List and File Program from 8052
T0 PRINT YBit 5 = ", (PORT1.AND.20H)/
80 PRINT “Bit 6 = ', (PORT1.AND.40H) Save all Data to a Data File
30 PRINT “Bit 7 = *',(PORT1.AND.BOH)/
100 END Send an ASCII Hex File to RAM

Load Text Editor

Execute an MS-DOS Command

ENTER to select ESC to quit

@R Exit Gl Help i Edit iE Menu i ClrSer G Dir i LastLn 0 ChgBaud &E EdLn

Figure 15-1. MDL Labs’ Basikit includes communications and
program-editing abilities.

The Microcontroller Idea Book 247

Chapter 15

e Elimination of the need to use line numbers at al.

e Automatic stripping of comments, to save memory and execution time in uploaded
programs.

¢ On-line help for BASIC-52.

¢ Debugging tools, such as setting of breakpoints or watch variables for program testing.

¢ Conversion of BASIC-52 programs to hex files for EPROM programming.

e Screening of variable names for duplicates or embedded keywords.

Pc Boards

If you'd rather not build your own 8052-BA SIC system from scratch, a variety of sources
areready to help hereaswell, with fabricated pc boards ready for use with the 8052-BASIC
chip. The boards contain all of the components required to get an 8052-BASIC system up
and running. Most come with complete schematics, to make it easy to add to the included
circuits. A few boards are available askits or bare boards, if you' d rather build your own.

I’ll describe just afew of the available products here; see Appendix A for amore complete
listing of sources.

BASCOM1
BY
PROLOGIC
DESIGNS

1
|
"
L]
U
]
[
]
¥
|
L
|
[|

Figure 15-2. Prologic’'s BASCOM1 is available as a low-cost bare pc board
with an instruction manual for construction and use.

248 The Microcontroller Idea Book

Related Products

Figure 15-3. Blue Earth’s Micro440 board has BASIC-52 and a monitor
program in a tiny package.

Micromint offersavariety of 8052-BA SIC boards and other products. Both the BCC52 and
RTC52 are single-board systems that can aso serve as the base of an expanded system. The
BCC52 uses edge connectors and a backplane, while the RTC52 is a stackable design. A
variety of expansion boards are available, including interfaces to displays, keypads, relays,
infrared control, and A/D converters. The BRUTE-52 isasingle board with many expansion
options on-board.

Micromint’s Domino isacomplete Basic-52 system in a 20-pin encapsulated package that’s
about the size and shape of a domino. It has a surface-mount 80C52-BASIC chip, 32
kilobytes each of RAM and EEPROM, and twelve 1/O pins, two of which may be analog
inputs. The Domino’s BASIC-52 interpreter adds functions for measuring frequency and
period and for reading the analog inputs.

Prologic Designs offers an inexpensive bare pc board (Figure 15-2) and detailed manual for
8052-BASIC systems, for those who prefer building their own.

Blue Earth Research’s Micro-440e is acompl ete system on atiny pc board, just 1.9" x 2.25"
(Figure 15-3). The system uses a surface-mount 83C51FB chip with both Blue Earth’'s
version of BASIC-52 and amonitor program in ROM. A case and expansion boards are also
available. The Micro-485 adds an analog-to-digital converter, clock and calendar, and an
RS-485 interface for networking.

The Microcontroller Idea Book 249

Chapter 15

To speed up program execution, you can use Dall as Semi conductor’s DS80C520 high-speed
microcontrollers, which are compatible with the 8051 family. MDL Labs and Photronics
Research offer variations of BASIC-52 designed for use with these chips.

BASIC-52 Source Code

If you're interested in seeing the source code for the BASIC-52 interpreter, look for it on
Intel’s or Philips' BBS or on the Internet (Appendix A). To modify the code, you'll need
Intel’s ASM51 or acompatible 8051 assembler.

250 The Microcontroller Idea Book

Sources

Appendix A

sources

ThisAppendix listsavariety of sourcesto help you inyour 8052-BASIC projects, including
books, on-line BBS's, and companies who offer products related to the topicsin this book.

Books

Hereisasedlection of booksabout BASIC-52, the8051/2 microcontroller family, and related
topics:

BASIC-52 Essentials

These are the essential hardware and software manuals for working with the 8052-BASIC.
You'll need either Intel’s or Systronix’s programming manual, and a data book from Intel
or another 8052 vendor. See the Product Vendors section for addresses and phone numbers.

BASI C-52 Programming

Systronix

$20 postpaid

Complete reference to the BASIC-52 programming language. Includes many program ex-
amples and handy back-cover index.

The Microcontroller Idea Book 251

Appendix A

BASI C-52 User’'s Manual (Intel #270010-004

$15

Compl ete reference to the BASIC-52 programming language. Includes some circuit sche-
matics.

Embedded Microcontrollers Handbook (Intel)

$22.95

Intel’s handbook, or data book, has hardware details and an assembly-languuage refer-
ence for the 8052 and 80C52 (and much more), but nothing specifically about the 8052-
BASIC chip. Intel updates the data books yearly, so the exact title and price may vary.
Ask for the data book that covers 8-bit embedded controllers. Philips, Siemens, and other
manufacturers also publish data books for their 8052 and 80C52 chips.

8051/2 Microcontrollers

These are some additional books about the 8051 family of microcontrollers. The Product
Vendorslist has addresses and phone numbers for many of the publishers. Local bookstores
can order the others, which are from major publishers.

Assembly Language Programming (L.S. Electronic Systems, 190 pages, $33.00). For the
8051 family.

C and the 8051: Programming and Multitasking, by Thomas W. Schultz (Prentice Hall,
1993, $52). Discusses using an operating system to handle multipletasks. Examplesinclude
solenoid cyclers, apulse generator, envel ope detector, and motor speed control, using the C
programming language.

The 8051 Family of Microcontrollers by Richard H. Barnett (Prentice Hall, 1995, 164
pages, $49)

The 8051 Microcontroller, 2nd edition, I. Scott MacKenzie (Macmillan, 1994, 356 pages,
$58). Includes schematics for a single-board computer, assembly-language source code for
amonitor program, and interfaces to akeypad, LEDs, and loudspeaker.

The 8051 Microcontroller: Architecture, Programming, and Applications, Kenneth J.
Ayala (West Publishing Company, 1991, 241 pages, $49). Includes disk with assembler and
simulator.

The 8051 Microcontroller: Hardware, Software, and Interfacing, James W. Stewart
(Regents/PrenticeHall, 1993, $27.50, 273 pages). I ncludes many interfacing examples, such
as switches, solenoids, relays, shaft encoders, displays, motors, and A/D converters, and a
chapter on top-down design method.

252 The Microcontroller Idea Book

Sources

Programming and I nterfacing the 8051 Microcontroller by Sencer Yeralan and Ashutosh
Ahluwalia (Addison-Wesley, 1995, $40, 328 pages)

Programming and I nterfacing with Microcontroller s-Experimenting with the8031 Fam-
ily of Microcontrollers (Rigel Corporation).

Data Books

Databooksarewhereto look for specific, detailed information about aparticular IC. They're
also agood source for application examples. National Semiconductor has a good selection
of books covering most typesof integrated circuits. The exact titlesand prices changefrom
year to year, but thisisatypica selection:

CMOSLogic (including HCMOS, HCTMOS, 4000 series, 74C series)
TTL Logic (including LSTTL)

Linear Devices (A/D, D/A, temperature sensors, voltage references)
Op Amps

Power ICs (voltage regulators, peripheral drivers)

You can request data books directly from the manufacturers. Digi-Key and other component
vendors aso offer a selection. For a small charge, many suppliers will include data sheets
for individual components that you order.

Related Topics

These are some other books that you may find useful in designing, building, and working
with microcontroller circuits:

The Art of Electronics, second edition by Paul Horowitz and Winfield Hill (Cambridge
University Press, 1989, $59.95). A complete and readable reference on electronic circuits
of all types.

Gordon McComb’'s Tipsand Techniquesfor the Electronics Hobbyist by Gordon McComb
(TAB-McGraw Hill, 1991). A good introduction to building, testing, and understanding
electronic circuits.

Making Printed Circuit Boards by Jan Axelson (TAB-McGraw Hill, 1993, $19.95). How

to design and make pc boards, with a chapter on wire-wrapping and other construction
methods.

The Microcontroller Idea Book 253

Appendix A
BBS’s

Use your personal computer and communications software to explore these BBS's (on-line
bulletin boards), which are good sources for files relating to the 8051/2, including the
8052-BASIC.

BBS Name Phone Number Available Files

Circuit Cellar 203-871-1988 8052 programming tools, programs
Intel Applications 503-264-7999 BASIC-52 source code

Philips Semiconductor 1-800-451-6644 BASIC-52 source code

Systronix 801-487-2778 HEX2RAM.BAS, HEXLOAD.BAS
Internet

Many of the vendors listed here now have information available on the World Wide Web.
L akeview Research’s Web site includesa BA SIC-52 page with linksto product vendors and
updates to the information in this book. You can also save yourself some typing by
downloading afile containing all of the code listings in the book.

You can find Lakeview Research on the Internet at: http://mww.Ivr.com

254 The Microcontroller Idea Book

Sources

Product Vendors

The following companies offer products related to microcontroller applications. Many are
mentioned as sources for particular products in this book.

Airpax Company

604 West Johnson Avenue
PO. Box 590

Chesire, CT 06410
203-271-6000

Allegro Microsystems

115 Northeast Cutoff, Box 15036
Worcester, MA 01615
508-853-5000

All Electronics Corp.

P.O. Box 567

Van Nuys, CA 91408-0567
1-800-826-5432

Allen Systems

2346 Brandon Road
Columbus, OH 43221
614-488-7122

Anywhere Engineering
920 Eighth Street
Boulder, CO 80302
303-442-0556

Amperex/Philips Sales Corporation
Providence Pike

Slatersville, RI 02876
401-762-9000

Basicon, Inc.

14273 NW Science Park Drive
Portland, OR 97229
503-626-1012

The Microcontroller Idea Book

stepper motors

motor-control chips

surplus components

8051 assembler

8051 assembler

L CD modules, manual (publication #238)

80C52-BASIC chip, systems, related products

255

Appendix A

Binary Technology BASIC compiler, 8052-BASIC systems,
PO Box 67 related products

Meriden, NH 03770

603-469-3232

Blue Earth Research 8052-BASIC systems, related products
165W. Lind Ct.

Mankato, MN 56001

507-387-4001

Blue Ridge Micros 8052-BASIC board
2505 Plymouth Road

Johnson City, TN 37601

615-335-6696

Dallas Semiconductor NV RAM, real-time clocks
4350 South Beltwood Parkway

Dallas, TX 75244-3292

214-450-0400

1-800-336-6933

Digi-Key Corporation electronic components
701 Brooks Ave. South

PO. Box 677

Thief River Falls, MN 56701-0677

1-800-344-4539

Dunfield Development Systems 8051 assembler
P.O. Box 31044

Nepean, Ontario K2B 8S8

Canada

613-256-5820

Edmund Scientific Company lenses, optical components, other scientific
101 E. Gloucester Pike equi pment

Barrington, N.J. 08007-1380

609-573-6250

256 The Microcontroller Idea Book

Sources

Electronics 123

17921 Rowland Street

City of Industry, CA 91748
1-800-669-4406
818-913-6735

F.C. Kuechmann
8113 NE 25th Ave.
Vancouver, WA 98665

Harris Semiconductor

PO. Box 883

Melbourne, FL 32902-0883
407-724-3000

Hitachi America, Ltd.
Semiconductor and IC Division
Hitachi Plaza

2000 Sierra Point Parkway
Brisbane, CA 94005-1819
1-800-448-2244

Hosfelt Electronics, Inc.

2700 Sunset Boulevard
Steubenville, OH 43952-1158
1-800-524-6464
614-264-6464

Intel Corporation

3065 Bowers Ave.
Santa Clara, CA 95051
408-765-8080
1-800-548-4725

Jameco

1355 Shoreway Road
Belmont, CA 94002
1-800-831-4242
415-592-8097

The Microcontroller Idea Book

products for wireless communications

BASIC-52 development software

display-control chips

HD44780 LCD controller data

surplus components

8052 data book

8052-BASIC chip, electronic components

257

Appendix A

JDR Microdevices
2233 Samaritan Drive
San Jose, CA 95124
1-800-538-5000
408-559-1200

Lite-On

720 S. Hillview Dr.
Milpitas, CA 95035
408-946-4873

L.S. Electronic Systems Design

2280 CamillaRd.

Mississauga, ON L5A 2J8

Canada
905-277-4893

Marlin Jones & Associates

P.O. Box 12685

Lake Park, FL 33403-0685

407-848-8236

Maxim Integrated Products

120 San Gabriel Drive
Sunnyvale, CA 94086
408-737-7600

MDL Labs

1073 Limberlost Ct.
Columbus, OH 43235
614-431-2675

Micro Computer Control
PO. Box 275

17 Model Avenue
Hopewell, NJ 08525
609-466-1751

Microcomputer Systems
1814 Ryder Drive
Baton Rouge, LA 70808
504-769-2154

258

electronic components

infrared detectors

8051 programming book

surplus components

RS232 interface, power-supply monitor 1Cs

BASIC-52 programming environment,

enhanced BASIC-52

8051 assembler

BASIC-52 systems

The Microcontroller Idea Book

Sources

Micro Future

40944 Cascado Place
Fremont, CA 94539
510-657-0264

Micromint

4 Park Street
Vernon, CT 06066
203-871-6170

Midwest Micro-tek
2308 E. 6th St.
Brookings, SD 57006
605-697-8521

Mitel Semiconductor

PO. Box 13089

Kanata, Ontario K2K 1X3
Canada

1-800-267-6244
613-592-2122

National Semiconductor Corporation
2900 Semiconductor Drive

P.O. Box 58090

Santa Clara, CA 95052-8090
408-721-5000

1-800-272-9959

Newark Electronics

4801 N. Ravenswood Ave.
Chicago, IL 60640-4496
312-784-5100

Omega Engineering
One Omega Drive
Box 4047

Stamford, CT 06907
1-800-826-6342

The Microcontroller Idea Book

BASIC-52 programming environment

80C52-BASIC chip, systems, related products

8052-Basic boards

switch-matrix chips

linear, digital 1Cs

electronic components

Sensors

259

Appendix A

Optek Technology
1215 West Crosby Rd.
Carrollton, TX 75006
214-323-2200

Philips Components/Signetics
811 East Arques Ave.

P.O. Box 3409

Sunnyvale, CA 94088
408-991-2000

Photronics Research
109 Camille St.
Amite, LA 70422
504-748-7090

Prologic

P.O. Box 19026
Batimore, MD 21204
410-661-5950

PseudoCorp

716 Thimble Shoals Blvd., Suite E
Newport News, VA 23606
804-873-1947

Rigel Corporation
P.O. Box 90040
Gainesville, FL 32607
904-373-4629

Sensors Magazine

Helmers Publishing, Inc.

174 Concord St.

PO. Box 874

Peterborough, NH 03458-0874
603-924-9631

Sharp Electronics

Microelectronics Group

5700 NW Pacific Rim Blvd., M/S 20
Camas, WA 98607

206-834-2500

260

optoel ectronic components

8052 chips, data books

high-speed BASIC-52 in Dallas DS87C520

8052-BASIC pc board, kit

8051 assembler

8051 book

Sensors Buyer’s Guide

optoel ectronic components

The Microcontroller Idea Book

Sources

Siemens Components
2191 Laurelwood Rd.
SantaClara, CA 95054
408-980-4500

Siemens Components
Optoelectronics Division
19000 Homestead Rd.
Cupertino, CA 95014
408-257-7910

Sil-Walker

880 Calle Plano, Unit #N
Camarillo, CA 93012
805-389-8100

FAX: 805-484-3311

Suncoast Technologies
PO Box 5835

Spring Hill, FL 34606
Voice/FAX: 352-596-7599

Systronix

555 South 300 East

Salt Lake City, UT 84111
801-534-1017

FAX: 801-534-1019
BBS 801-487-2778

TAB-McGraw Hill

P.O. Box 0850

Blue Ridge Summit, PA 17294-0850
1-800-262-4729

Timeling, Inc.

1490 W. ArtesiaBlvd.
Gardena, CA 90247
1-800-872-8878

Unicorn Electronics

10010 Canoga Ave. Unit B-8
Chatsworth, CA 91311
1-800-824-3432

The Microcontroller Idea Book

8052 chips, data books

optoel ectronic components

keypad kits

8052-BASIC board

BASIC compiler, BASIC-52 programming
manual

book publisher

surplus LCD modules

8052-BASIC chip, electronic components

261

Appendix A

Universal Cross Assemblers 8051 assembler
PO. Box 6158

Saint John, NB E2L 4R6

Canada

506-847-0681

262 The Microcontroller Idea Book

Programs for Loading Files

Appendix B

Programs for Loading Files

This appendix contains the BASIC-52 programs HEX2RAM.BAS and HEXLOAD.BAS
described in Chapter 13. Use HEX2RAM.BAS to load an Intel Hex file from your host
computer to RAM, including battery-backed (NV) RAM. The HEXLOAD.BAS program-
does the same, but also allows you to load the file into EEPROM or EPROM. HEX2RAM

uses XBY, while HEXLOAD uses PGM, and is slower.

The Microcontroller Idea Book 263

Appendix B

Listing B-1 (page 1 of 2). HEX2RAM.BAS loads Intel Hex files from a host
computer to memory in the 8052-BASIC system. Reprinted with permission from

Systronix.

10 STRING 82, 80 : DIM HI (70) : DIM LOW (70)

15 FOR I=48 TO 57 : HI(I) = (I - 48) * 16 : LOW(I) = I - 48

NEXT
25 FOR I=65 TO 70 : HI(I) = (I - 55) * 16 : LOW(I) = I - 55
NEXT

35 PRINT TAB(19), "INTEL HEX FILE TO RAM LOADING PROGRAM V1.1

45 PRINT TAB(14), “Copyright 1991 Systronix Inc. All rights
reserved.” : PRINT

55 PRINT TAB(8), "This program accepts as input an Intel hex
file and stores"

65 PRINT TAB(8),"it in external RAM at the addresses speci-
fied in the HEX file.":PRINT

75 PRINT TAB(8), "Ready to receive the input file one line at
a time. Set your"

85 PRINT TAB(8), "communication software to send a line when
when it receives"

95 PRINT TAB(8),"the ’'>’ prompt." : PRINT

100 LINE=LINE+1 : INPUT “>”,S$(0) : PRINT"Validating and stor-
ing...",

105 C = ASC(s$(0),1) : IF C<>58 THEN GOTO 500

REM Get the byte count and save it in the variable COUNT

115 I = 2 : GOSUB 700 : COUNT = CH

REM Get the starting address for this record’s data

125 FOR I = 4 TO 7 STEP 2 : GOSUB 700 : ADDR = (ADDR * 256)
+ CH : NEXT

REM Get the record type (we only understand types 0 and 1)

135 I = 8 : GOSUB 700 : IF (CH <>0 .AND. CH <>1) THEN GOTO
510

145 RECORD = CH

REM The initial checksum calculation

155 CHECK=(ADDR/256)+ (ADDR.AND.OFFH) +COUNT+RECORD

REM Get the individual bytes, accumulate them in the check
sum and store

REM them in memory at the appropriate destination

165 FOR I = 10 TO 10 + (COUNT * 2) STEP 2 : GOSUB 700

264 The Microcontroller Idea Book

Programs for Loading Files

Listing B-1 (page 2 of 2).

REM Here we deal with the data bytes (not executed when RE-
CORD is type 1)

175 CHECK=CHECK+CH

185 IF RECORD = 1 THEN GOTO 210

REM Store the data in RAM

195 XBY (ADDR) =CH

205 if CBY (ADDR) <>CH THEN GOTO 550 ELSE ADDR = ADDR + 1
NEXT

210 CHECK=CHECK.AND.OFFH : IF CHECK<>0 THEN GOTO 520
215 IF RECORD = 1 THEN GOTO 640

REM Reset and continue
225 ADDR = 0 : PRINT CR : GOTO 100

REM Error messages and program termination

500 PRINT CR, “Line ”, LINE, “: Character”, I, “unexpected”
GOTO 600

510 PRINT CR, “Line ”, LINE, “: Unknown record type”, CH
GOTO 600

520 PRINT CR, “Line ”, LINE, “: Checksum failure. Expected”,

525 PHO. ABS (CHECK-CH) : GOTO 600

550 PRINT CR, “Line”, LINE, “: Verify error at address”,
PHO. ADDR

555 PHO. “The byte at”, addr, “ is”, CBY (ADDR)

565 PHO. “The byte should be”, CH : GOTO 600

600 PRINT “Stop sending input file. Type a CONTROL+C to
quit.”
605 GOTO 605

REM Normal program exit point
640 PRINT CR, “Received an End record in line”,LINE : END

REM Convert the ASCII text to numbers

700 C = ASC($(0),I) : CH = HI(C) : C = ASC($S(0),I + 1) : CH
= CH + LOW (C)

705 RETURN

The Microcontroller Idea Book 265

Appendix B

Listing B-2 (page 1 of 4). HEXLOAD.BAS copies an Intel Hex file into RAM,
EEPROM, or EPROM in an 8052-BASIC system.

1
2
3

8

9

10
11
12
20
21
22
30
40

STRING 82, 80

PRINT TAB(22), "HEX FILE LOADING PROGRAM 1.2"

PRINT TAB(14), “(C) 1990,1991 Systronix Inc. All rights
reserved.” : PRINT

PRINT “This program accepts as input, an Intel format hex
file and stores”

PRINT “it in RAM, EPROM, or EEPROM at the addresses speci-

fied.” : PRINT
PRINT : PRINT “Select the destination device type:”
PRINT
PRINT TAB(10), “[1] RAM” : PRINT TAB(10), “[2] Timed
EEPROM”
PRINT TAB(10), “[3] EPROM (Intelligent algorithm)”
PRINT TAB(10), “[4] EPROM (50mS algorithm)”
PRINT TAB(10), “[5] EEPROM (RDY/BUSY type)”
INPUT “Select Device Type (1, 2, 3, 4, 5) >> ", TYPE
IF (TYPE < 1) .OR. (TYPE 5) THEN PRINT CHR(7) : GOTO 11

TYPE=TYPE-1 : IF TYPE = 0 THEN GOTO 1300
if type = 1 then goto 22 else goto 30

INPUT “Delay between writes >> 7, delay : goto 1300
ON (TYPE) GOSUB 2100, 2100, 2110, 2120, 2100
IF TYPE = 2 THEN DBY(38) = DBY(38) .OR. 8 ELSE DBY(38) =

DBY (38) .AND. Of7H

rem Calculate and store pulse width

50

13

13

13

13
13

13

WAIT = 65536-WAIT*XTAL/12 : DBY(40H) = WAIT/256
DBY (41H) = WAIT.AND.OffH
00 PRINT “Ready to receive the input file one line at a

time. Set your”

10 PRINT “communication software to send a line when when
it receives”

20 PRINT “the ’'>’ prompt.” : PRINT

30 SOURCE = MTOP - FREE + 1

40 LINE = LINE + 1 : INPUT">", $(0) : PRINT “Validating
input buffer ...",
50 I =1 : C = ASC($(0),1) : IF C<>58 THEN GOTO 3000

REM if not “:”

266 The Microcontroller Idea Book

Programs for Loading Files

Listing B-2 (page 2 of 4).

rem Get the byte count and save it in the variable COUNT
1360 I = 2 : GOSUB 2000 : COUNT = CH

rem Get the starting address for this record’s data

1370 FOR I = 4 TO 7 STEP 2 : GOSUB 2000 : ADDR = (ADDR *
256) + CH : NEXT

rem Get the record type (we only understand types 0 and 1)

1380 I = 8 : GOSUB 2000 : IF (CH <>0 .AND. CH <>1) THEN
GOTO 3010

1385 IF TYPE <>0 .AND. ADDR <8000H .AND. CH = 0 THEN GOTO
3040

1390 RECORD = CH

rem Get the individual bytes, accumulate them in the check
sum and store
rem them in memory
1400 INDEX = SOURCE : FOR I = 10 TO 10 + (COUNT * 2) STEP 2
GOSUB 2000

rem Here we deal with the data bytes (not executed when RE-
CORD is type 1)

1410 CHECK=CHECK+CH

1420 IF RECORD = 1 THEN GOTO 1440

1430 XBY(INDEX)=CH : INDEX = INDEX + 1 : NEXT

rem Calculate the checksum

1440 CHECK= (CHECK+ (ADDR/256)+ (ADDR.AND.OFFH) +COUNT+RE-
CORD) .AND.OFFH

1450 IF CHECK<>0 THEN GOTO 3020

1460 IF RECORD = 1 THEN GOTO 3030
1470 PRINT CR, “Storing a Data record of”, COUNT, “bytes
at”, : PHO. ADDR

rem Retreive the data from memory and store them in the
proper addresses

1480 on type gosub 1500, 1570, 1520, 1520, 1520

rem Restore our variables and continue
1490 ADDR = 0 : CHECK=0 : GOTO 1340

The Microcontroller Idea Book 267

Appendix B

Listing B-2 (page 3 of 4).

rem Store the data in RAM
1500 FOR I=SOURCE TO SOURCE + COUNT-1 : XBY (ADDR)=XBY (I)

rem Now verify that stored data is readable as code
1505 if XBY(I) <> CBY(ADDR) THEN GOTO 3130

1508 ADDR = ADDR+1 : NEXT

1510 RETURN

rem Store the data in EPROM or RDY/BUSY EEPROM
rem First load the source address registers
1520 DBY (1BH) = SOURCE/256 : DBY (19H) = SOURCE .AND. OFFH

rem Now load the destination address registers
1530 DBY (1AH) = (ADDR-1)/256 : DBY (18H) = (ADDR - 1)
.AND. OFFH

rem Now load the number of bytes to program
1540 DBY (1Fh) = COUNT/256 : DBY (1Eh) = COUNT .AND. OFFh

rem Program the data into the part
1550 PGM : IF DBY (1Fh) .OR. DBY (l1lEh) <>0 THEN GOTO 3060
1560 RETURN

1570 FOR I=SOURCE TO SOURCE + COUNT-1 : XBY (ADDR) = XBY
(I)

1580 time = 0 : dby (47h) = 0 : clockl : do : until time >=
delay

1590 if xby (addr) <>xby (i) goto 3100
1600 addr = addr + 1: clockO : next : clock0O : return

rem Convert the ASCII text to numbers

2000 C = ASC($(0),I) : IF (C<=70 .AND. C>=65) THEN C = C -
55_ELSE C = C - 48

2020 CH = C * 16 : C = ASC(s(0),I + 1)

2040 IF (C<=70 .AND. C>=65) THEN C = C - 55 ELSE C = C - 48

2050 CH = CH + C : RETURN

rem Here when we are going to load the data into EEPROM.
2100 WAIT = 0.0005 : RETURN

rem Here for Intelligent programming

2110 WAIT = 0.001 : RETURN

268 The Microcontroller Idea Book

Programs for Loading Files

Listing B-2 (page 4 of 4).

rem Error messages and program termination

3000 PRINT CR ,"Line “,LINE,” EXPECTED ’':’, FOUND
' CHR(C),"’'" END

3010 PRINT CR, “Line ”, LINE, “: Unknown record type”, CH
END

3020 PRINT CR, “Line ", LINE, “: Checksum failure. Ex-
pected”,

3025 PHO. ABS (CHECK - CH) : END

rem Normal program exit point

3030 PRINT CR, “Received an End record in line”,LINE : END

3040 PRINT CR, “Line”, LINE, “: Illegal EPROM/EEPROM ad-
dress :”,

3050 PHO. ADDR : END

3060 PRINT CR, “Line”, LINE, “: PGM error at address”,

3070 ADDR = DBY (1AH) * 256 + DBY (18h) : PHO. ADDR

3080 PHO. “The byte at”, address, “ is”, XBY (ADDRESS)

3090 PHO. “The byte should be”,DBY (28) : END

3100 PHO. CR, “Line”, LINE, “: Error writing at address”,
ADDR

3110 PHO. “The byte at”, addr, “ is”, XBY (ADDR)

3120 PHO. “The byte should be”, XBY (I) : END

REM verify CBY() read in RAM failed:

3130 PHO. “The byte at”,addr," failed a verify with CBY"
END

The Microcontroller Idea Book 269

Appendix B

270 The Microcontroller Idea Book

Number Systems

Appendix C

Number Systems

Designing and programming microcontroller circuits often involves working with different
number systems, including hexadecimal and binary as well as familiar decimal numbers.
Hexadecimal and binary systems are useful because they offer an easy-to-interpret way of
expressing the bit- and byte-oriented values that computers use. This appendix is areview
of these number systems.

About Number Systems
A number system provides a way to express numerical information. Each of the number

systems described below varies in the number, or quantity, on which it is based (10, 2, or
16). Thisdetermines, among other things, how many charactersyou need to expressagiven

quantity.
Decimal Numbers

In the decima number system used in everyday (non-computer) life, there are ten digits
(0-9). Each digit in a number represents a value raised to a power of 10.

The Microcontroller Idea Book 271

Appendix C

Thistable shows the value of each digit in the decima number 193:

Decimal digit 1 9 3
Digit multiplier 102 101 100
Digit value 100 90 3

Binary Numbers

In the binary number system, each digit represents a value raised to a power of 2. The
numbers use only two of the ten decimal digits (0O and 1).

Binary representations are useful when you need to quickly see the value of each bit in a
byte. For example, you might want to set, clear, toggle, or read a bit in one of the 8052's
special function registers (TCON, PCON, and so on). Or, inacontrol circuit, individual bits
might control switches or relays. BASIC-52's logical operators offer a way to control and
display individual bit values.

Thistable shows the value of each digit in 1100 0001, which isthe binary representation of
the decimal number 193:

Binary bit 1 1 0 0 0 0 0 1
Bit multiplier 27 26 25 24 23 22 21 20
Bit value (decimal) 128 64 0 0 0 0 0 1

Hexadecimal Numbers

In the hexadecimal (or hex) number system, each character represents a value raised to a
power of 16. There are 16 characters, with the letters A through F representing the decimal
values 10 through 15.

Because each character in a hex number represents 4 bits, hex numbers are a convenient,
compact way to express 8-bit or 16-bit numbers. In BASIC-52, you enter hex values at the
host system’s keyboard by adding a trailing h to the number. (Example: 1Fh.) If the first
character isin therange A-F, you must also add aleading O. (Example: OESh.) BASIC-52's
PHO. and PH1 . operators display numbersin hex format on the host computer’s screen.

272 The Microcontroller Idea Book

Number Systems

Thistable showsthevalueof each character in C1h, whichisthe hexadecimal representation
of the decimal number 193:

Hex character C 1
Character multiplier 161 160
Character value (decimal) 192 1

Binary-coded Decimal Numbers

Binary-coded decimal, or BCD, is yet another way of expressing numbers. It allows easy
translation of binary bits to decimal values. Chapter 10 has more on this number system.

Kilobytes and Megabytes

Two other popular terms for dealing with quantities in the computer world are kilobyte and
Megabyte.

In the metric system of measurement kilo means 1000, but in the computer world, it
commonly refersto 1024(2 or400h|nhexadeC| mal). So, an 8-kilobyteRAM chip actually
stores 8192 bytes, not 8000. “K” is short for kilobyte: 8K equals 8 kilobytes.

In an similar way, in the metric system, Mega means a million, but in the computer world,

it commonly refers to 1,048,576 (220, or 1000h in hexadecimal). One Megabyte equals
1024 kilobytes. “M” is short for Megabyte: 8M equals 8 Megabytes.

The Microcontroller Idea Book 273

Appendix C

274 The Microcontroller Idea Book

Index

Index

A

ADC, 158 - 169
address bus, 27 - 28
address latch disable, 22
addresslatch enable, 21, 29
alarm circuit, 178 - 184
ALE, 21, 29
ALEDIS, 22
algorithms, programming,
56 -
Altair 8800, 2
anaog-to-digital converter,
158 - 169
ASCII Hex format, 223
assembly language
defined, 8
interfacing, 217 - 238

B

BASIC compilers, 247

BASIC-52
booting, 35- 38
customizing, 233 - 235
enhanced versions, 245 - 246
in external memory, 239 - 244
keywords, 72 - 86
manuals, 14 - 15, 251 - 252
programming tips, 65 - 71
running programs, 39 - 40
source code, 250

Basikit, 247

BBS's, 254

binary
fileformat, 223
numbers, 272

books, 251 - 253

bootup options, 54 - 55

breakpoint, 10

bus
See address, data

C

calendar functions, 174 - 184
capacitors, decoupling, 30

chip, choosing, 5 - 6
clock, real-time, 42, 171 - 184
CMOS

compatible logic, 29

versus NMOS, 6
code memory, 21, 88
COM port, 36
command mode, 66
companies, 255 - 262
comparator, 157 - 158
compilers

defined, 9

BASIC, 246 - 247
computer, host, 3, 15 - 16
construction

materials, 14

tips, 31 - 32
CONTROL+C, 40, 44 - 45
control circuits, 185 - 198
CPU, 17
crashes, program, 40
cross assembler, 219
crystal

accuracy, 172

choosing, 26

See also XTAL

D

DAC, 227 - 228

databus, 27

datamemory, 21

debugging, 9- 10, 37, 70- 71

decimal numbers, 271 - 272

detector, 153

development system, 9- 10

digital-to-analog converter,
227 - 228

disk storage, 63 - 64

displays, 125 - 152

E

EA, 22, 25
EEPROM, 7, 49 - 56
8051 family, 15- 16
8052-BASIC

about, 11 - 26

NMOS versus CMOS, 6
8255, 98 - 108

embedded controller, 1
emulator, 10
environments, programming,
247 - 248
EPROM
about, 6- 7
adding, 56 - 60
programming, 236 - 238
testing programsin, 9
erasing NVRAM, EEPROM,
55
errors, finding program, 9 - 10,
70-71
executablefile, 219
external memory
accessing, 21 - 22, 42
circuits, 25 - 29

F

Flash EPROM, 7
formats, file, 222 - 224
FPROG
using, 53, 55
circuits, 60 - 61
simulating, 243 - 244

G

gain control, op amp, 189 - 191
GET, 44 - 45

H

HEX2RAM.BAS, 264 - 265

hexadecimal numbers, 70,
272 - 273

HEXLOAD.BAS, 266 - 269

history of microcomputers,
2-3

host computer, 3

1/0 ports
adding, 89 - 108
in 8052, 20 - 22
Port 1,40 - 41
infrared, 199 - 215

275

Index

Input/Output, see 1/O
instruction set, 6
Intel Hex format, 220, 224
interface chips, 98
interfacing to aport, 93 - 96
interpreters, 9
interrupts
assembly language, 232 - 233
in 8052, 22
types, 112 - 114

K

keypad, 116 - 124

keywords
BASIC-52,72 - 86
defined, 65

kilobyte, 273

L

languages, programming, 8 - 9
latch, octal transparent, 26 - 27
LCD, 135, 152
LED, 125- 135
lenses, 215 - 216
level tranglating

analog, 167 - 168

digital, 93 - 96
light-emitting diode, 125 - 135
liquid-crystal display, 135 - 152
logic

families, 29 - 20

unused gates, 34

M

machine code, 8
manuals, 14 - 15
matrix, switch, 187 - 189
Megabyte, 273
memory
accessing external, 20 - 22, 42
check, 38
decoding, 91 - 91
8052's, 6
map, 87 - 89
mercury switch, 155
microcontroller, defined, 1

276

mi Croprocessor, 2

mnemonics, 8

modules, program, 66 - 67

motor control, 191 - 198

MTOR, 38, 53, 55

multiplexed address/data bus,
20

N

NMOS
compatible logic, 29
versus CMOS, 6
nonvolatile memory, 47 - 61
number systems, 271 - 272

NVRAM, 48 - 56
O

object file, 219
OE, 29

on/off switch, 33
op amp, gain control, 189 - 191
orientation, component, 32 - 33
oscillator

design, 203

See dso crystal, XTAL
output enable, 29

pc boards, 248 - 249
PGM EN, 22, 58 - 60
PGM PULSE, 22, 52
photocell, 157
port
Seel/O
Port 1,40 - 41
power supply
connections, 22

PROG commands
about, 53 - 60
simulating, 243 - 244
programmabl e peripheral
interface, 98 - 108
program
assembly-language, 217 - 238
crashes, 231
documenting, 67
exiting, 44 - 45
saving, 47 - 64
storage, 6- 7
program enable, 22, 58 - 60
program pulse, 22, 52
program status word, 231
program store enable, 21, 26
programming
commands, 22, 53 - 60
environments, 247 - 248
languages, 8- 9
tips, 66 - 68
PSEN, 21, 26
psw, 231
PWM, 195 - 198

R

radio link, 216
RAM
choices, 28 - 29
in 8052, 20
use, 7
RD, 21, 26
RDANY, 26
read
cycle, 29
of port, 96 - 97
signal, 21
references, 14 - 15
relay, 187 - 189
reserved words

EPROM-programming, 61 - 62 defined, 65

for 8052-BASIC, 14
system, 30
wirelesslink’s, 207
powering up, 35
PP, 98 - 108
printed-circuit boards, 248 -
249
Procomm Plus, 36

BASIC-52's, 72 - 86
reset, 22, 26
ROM

about, 7

in 8052, 17
ROM command, 54
RS-232,30,34-35
run mode, 66

Index

S

sample and hold, 169
SBC, 3
schematic

reading, 31

system, 24 - 30
sensors, 153 - 170
seria port

8052's, 22

RS-232,30,34- 35
7-segment display, 129 - 138
simulator, 10
sine-wave generator, 226 - 229
single-board computer, 3
single-stepping, 10
SmartSocket, 48 - 49
software

for uploading programs, 221

termina-emulation, 15
solar cdll, 165 - 166
source code, BASIC-52, 250
stack, 231
stepper motor, 191 - 195
subroutines, 66 - 67
switch

matrix, 187 - 189

power, 185 - 187

press, detecting, 45

sensor as, 155

toggle and slide, 109 - 115

T

target system, 3
task, defining, 4 - 5
temperature sensor, 163 - 165
Terminal Accessory, Windows,
36
termina emulation, 15
test equipment, 16
timekeeper, watchdog,
174 - 184
timers and counters
in 8052, 21
useof, 171 - 184
transducer, 153
troubleshooting, 9 - 10, 37,
70-71
TTL compatiblelogic, 29

Vv

vendors, 255 - 262

w

watchdog timekeeper,
174 - 184
Windows terminal accessory,
36
wirelesslink, 199 - 216
WR, 21
write
cycle, 29
signal, 21
to aport, 97

X

XFER, 54
XTAL, 38
See also crystal

277

Index

278

