
1

This article is for anyone developing serial-port applications using the Parallax Basic
Stamp (www.parallax.com). The text is adapted from the first edition of my book Serial
Port Complete. The PC example code is written for Visual Basic 5 using the MSComm
control. Complete code examples from the first edition are available at www.Lvr.com/
files/spc.zip.

Serial Port Complete Second Edition adds firmware examples for PICBASIC PRO,
Microchip’s C18 compiler, and .NET. To make room, I had to cut the Stamp examples, but
I wanted to continue to make the information available, so here it is.

More code examples for .NET and PIC microcontrollers are available from:

www.Lvr.com/serport.htm

Jan Axelson
www.Lvr.com

Serial Port Complete Second Edition
COM Ports, USB Virtual COM Ports, and Ports for Embedded Systems
Jan Axelson

ISBN 978-1931448-06-2

Lakeview Research LLC
www.Lvr.com

2

copyright 1998, 1999, 2000, 2007 by Janet L. Axelson

Software License Agreement for the code listings in this article

Licensor grants any person obtaining a copy of this software ("You") a worldwide, roy-
alty-free, non-exclusive license, for the duration of the copyright, free of charge, to store
and execute the Software in a computer system and to incorporate the Software or any
portion of it in computer programs You write.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLD-
ERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

3

Using the Basic Stamp’s
Serial Port

Jan Axelson

An example of a microcontroller with a serial port is Parallax Inc.’s Basic Stamp. The
Stamp is a microcontroller with a Basic interpreter on-chip. There are several models.
Each uses a microcontroller from Microchip’s PIC family. The Stamp I uses a 16C56, and
the Stamp II, a 16C57.

Because of its enhanced features, the Stamp II is a better choice than the Stamp I for many
applications that use serial communications, especially with multiple nodes. The module
has the footprint of a 24-pin DIP chip, with 16 pins of I/O, 2 kilobytes of EEPROM for
storing user programs, and 24 bytes available for variable storage. For a power supply, it
can use an unregulated DC supply from just over +5V to +15V (such as a 9V battery) or a
regulated +5V supply.

Figure 1 shows the pinout. In some of the Stamp’s documentation, GND is referred to as
Vss, Sin, as RX, and Sout, as TX. Sin and Sout could stand for SerialIn and SerialOut, but I
prefer to think of them as StampIn and StampOut, because these more precisely describe
the direction of data flow.

The Stamp II uses an asynchronous serial interface for programming and debugging. To
communicate with the Stamp, Parallax provides the Stamp2 host program, which runs
under DOS and includes a text editor for writing programs, plus the ability to load Basic
programs into the Stamp II and load and save programs on disk. You can also use the serial
port to communicate with other devices.

The Stamp IC is a smaller and simpler version with 14 pins and 8 I/O bits. An earlier ver-
sion resided on a larger circuit board and used through-hole rather than surface-mount
components. Both versions have 256 bytes for storing user programs and 14 bytes of vari-
able storage. Instead of connecting to a PC’s serial port, The Stamp I uses a parallel-port

4

interface for programming and debugging. (Serial-port software is available for the Macin-
tosh, which has no parallel printer port.) As on the Stamp II, programs can use asynchro-
nous serial communications to communicate with other devices.

Both Stamps use versions of Parallax’s PBasic interpreter. Like Basic-52, PBasic has
much in common with other Basics, yet is customized for use in a microcontroller. The
Stamps’ PIC microcontrollers are smaller and simpler in design than the 8052, so their
interpreter is smaller and simpler to match.

Parallax offers carrier boards for both Stamps. Each includes a socket for the Stamp, a
connector for PC communications, battery clip, reset button, and prototyping area. You
can develop a project right on the carrier board or you can use a breadboard, your own
perfboard, or any other method you prefer. Other vendors offer products with added fea-
tures to make project development easy.

Serial Links
The Stamp II may use as many as five serial-port signals plus a ground wire, though all of
these aren’t always needed. Table 1 lists the signal lines and their uses.

If you use the provided carrier board and cable, all you have to do is plug the cable into the
board and a port on a PC (Figure 2A). The carrier board’s connector is wired as a 9-pin
RS-232 DCE device, so you don’t need a null-modem cable or converter (as described in
Chapter 7). The carrier board connects DSR and RTS. This connection enables the host
software to detect which port connects to the Stamp.

If you don’t use the carrier board, you can connect a power supply and serial cable directly
to the Stamp. If you want the host to autodetect the port, connect DSR and RTS in your cir-
cuits. If you don’t include this connection, you can specify a port in the command line
when you run the host software: Stamp2 /2.

Instead of Parallax’s provided cable, you can use any standard RS-232 cable that contains
the needed wires. Standard serial cables may have 3, 9, or 25 wires. A standard cable with
9 or more wires will work fine. If you make your own cable, you can make the DSR/RTS
connection at the PC’s connector and eliminate two wires.

Figure 1: Pinout of the Basic Stamp II.

5

When a Stamp project is complete, the host software’s autodetecting and program-down-
loading abilities are no longer needed (Figure 2B). ATN should be held low to prevent
accidental resets. To defeat any handshaking enabled at the PC, you can tie RTS to CTS
and tie DTR, DSR, and CD together in the serial cable or at the serial connector in your cir-
cuits. However, it’s usually a simple matter to disable all handshaking at the PC, and then
you don’t need these connections.

When wiring your own circuits, be aware that the Stamp’s -Reset pin connects to more
than the PIC’s -MCLR (reset) input. Additional circuits at -MCLR ensure a clean reset sig-
nal on power-up and enable the host software to reset the chip with ATN. Don’t tie -Reset
high if you need to communicate with the host software! If you do connect -Reset directly
to +5V, the host software won’t be able to reset or communicate with the Stamp. -Reset
may be left open or connected to a normally-open pushbutton with a pullup to +5V.

A Firmware UART

Although some PIC microcontrollers have hardware UARTs, the Stamps’ microcontrollers
don’t. Instead, the Basic Stamps’ UARTs are implemented in firmware, with the UART’s
functions programmed into the interpreter.

The serial ports on the Stamp IC and II are similar in many ways. Neither has any buffers
at all. To read a byte at the serial port, the Stamp must execute a Serin statement and
wait for a byte to arrive. If the byte arrives before Serin executes, the Stamp won’t see it.
If no byte arrives, the Stamp IC will wait forever. To prevent endless waits, the Stamp II
allows use of a Timeout modifier that enables the Stamp to jump to a line label if a spec-
ified number of milliseconds pass with no activity at the port.

Because the Stamp’s port is implemented in firmware, not hardware, it can include options
that hardware ports don’t normally have. The outputs can be inverted or not, so they’re

Figure 2: Wiring for Basic Stamp II serial links.

6

usable with or without inverting drivers and receivers. A Stamp can use any of its I/O bits
for serial communications. It can even have multiple serial ports, using different bits for
each (though it can use just one at a time). These abilities greatly simplify project develop-
ment for Stamps used in serial links and networks. The Stamp can reserve Sin and Sout for
PC communications for loading and saving programs, viewing debug messages, and other
experimenting, and use other port bits for the network. When all is working fine, you can
disconnect Sin and Sout and use the Stamp on its own in the network.

If you don’t need 2-way communications, you can even have a 1-bit port. If you’re con-
necting the serial ports of two Stamps, you can use the Stamp’s open baudmode for 2-way
communications over 1 bit.

If you want to know how to write a firmware UART, an excellent resource is Scott
Edwards’ PIC Source Book, which contains clearly commented assembly-code routines
that emulate each of the Basic Stamp’s instructions, including Serin and Serout.

Options and Features
Each read or write to the Stamp’s serial port has to specify the bit rate, pin number, and
other information. The values are easily stored in variables or constants, however, so each
needs to appear just once in a program. The statement to read a serial port on the Stamp II
is:

SerIn rpin {\fpin}, baudmode, {plabel,} {timeout, tlabel,}
[InputData]

To write, it’s:

SerOut tpin{\fpin}, baudmode, {timeout, tlabel,} [OutputData]

or

SerOut tpin, baudmode, {pace} [OutputData]

The parameters in the above statements are as follows:

rpin and tpin specify the pin to use for the serial input and output. Set these to 16 to
use the Stamp’s Sin or Sout pin, or 0–15 to select a port pin. Serout automatically con-

Table 1: Serial-port connections between a Basic Stamp II and a PC.
Stamp II PC Serial Port Description

Pin Signal Signal 9-pin 25-pin

2 Sin TD 3 2 Carries data from the PC to the Stamp.

1 Sout RD 2 3 Carries data from the Stamp to the PC.

- On
carrier
board

RTS 7 4 Connects to DSR to enable the host software to
detect which of a PC’s serial ports connects to a
Stamp.

- - CTS 8 5 No connection.

- On
carrier
board

DSR 6 6 See RTS.

4, 23 Vss SG 5 7 Signal ground.

- - CD 1 8 No connection.

3 ATN DTR 4 20 Resets the Stamp. The PC’s host software pulses
DTR high to enable downloading of a new program.

7

figures the requested pin as an output and leaves it in that state after transmitting. In a sim-
ilar way, Serin configures the requested pin as an input and leaves it in that state after
receiving data or a timeout.

\fpin designates a pin for handshaking. On executing Serin, the Stamp sets fpin low
(or high, if using inverted signals) to indicate that it’s ready to receive data. Serout will
wait for its designated fpin to be in the appropriate state before sending data.

baudmode is a 16-bit word that holds several settings. It specifies the bit rate, the number
of data bits and parity, and the polarity of the bits to send and read. It can also enable the
Stamp’s open baudmode, described below. For most situations, you can select a baudmode
value from the table in the Stamp’s manual. Listing 1 is a Visual-Basic function that
accepts a series of settings and returns a baudmode value to match. The value is calculated
like this:

Bits 0–12 equal the period of one bit in microseconds, minus 20. For example, 300 bps has
a period of 3333 μsecs. Subtract 20 and the result is 3313. The top bit rate is 38,400 bps,
though higher rates may require pacing between bytes, as described below.

Bit 13 is 0 for 8 bits, no parity, or 1 for 7 bits, Even parity.

Bit 14 is 0 for noninverted, 1 for inverted. When connecting two Stamps, both must have
the same polarity. RS-232 uses inverted signals. When using RS-232, select inverted if the
Stamp’s interface doesn’t use a MAX232 or other inverting driver, or non-inverted if it
does.

Important tip: If you use inverted baudmode for RS-232 output on a pin other than Sout,
write 1 to the bit on power up. This ensures that the bit will remain high (RS-232 idle
state) until the Start bit of the first SerIn statement pulls it low. For example, if you’re
using bit 14 for serial output, place this statement near the beginning of the program:

high 14

For Serout, bit 15 is 0 for normal operation, and 1 for open baudmode, which enables
connecting multiple Stamps to one line. (Chapter 12 has more on open baudmode.) Bit 15
is unused by Serin.

plabel names a label to jump to on parity error.

timeout is the number of milliseconds to wait for incoming data on SerIn, or for fpin
to indicate ready on SerOut. Tlabel is the label to jump to on timeout.

pace gives a delay in milliseconds between bytes. Pacing allows time for the receiving
device to process each byte before reading the next. Stamps may require pacing at 9600
bps or higher.

Data Formats
The final parameters, InputData and OutputData, lists the value or values to write or
read at the serial pins. Both of these allow a variety of modifiers that automatically process
data, either before sending it or on receiving it. The modifiers can save processing time
and storage space in the Stamp and make it easy to communicate with devices that require
specific formats.

The Dec modifier converts SerOut data to the ASCII codes that represent the value’s
decimal digits. For example, an OutputData of [Dec 5] writes 53, the ASCII code
for 5, to the port. An OutputData of ["5"] accomplishes the same thing. Sending

8

ASCII codes is useful if the receiver will display the values as ASCII text. Also, some net-
works send all data as ASCII text, reserving other values for node addressing, control
codes, or other uses.

On the receive side, the Dec modifier causes SerIn to accept ASCII codes for characters
0–9 until receiving a code for a non-numeric character. SerIn then converts the codes to
their numeric value, and stores the value in the indicated variable. This saves memory on
the receiving end, because one byte can store a value represented by two or three charac-
ters. For example, input bytes of [50, 53, 53, 10] are the ASCII codes for 2, 5, 5,
and linefeed. An InputData of [Dec A], where A is a byte variable, would accept the
first three codes, quit on seeing the non-numeric linefeed character, and store the value
255 in A.

For Visual-Basic and QuickBasic programmers, SerOut’s Dec is equivalent to CStr(),
and SerIn’s Dec is equivalent to Val().

Public Function fncGetBaudMode _
 (BitRate As Long, _
 Parity As Boolean, _
 Inverted As Boolean, _
 OpenBaudMode As Boolean) _
As Long
'Returns the Basic Stamp’s baudmode parameter
'for the requested settings.
Dim BitRateValue As Long
Dim ParityValue As Long
Dim InvertedValue As Long
Dim OpenBaudModeValue As Long
BitRateValue = 1000000 \ BitRate - 20
If Parity = True Then
 ParityValue = 8192
Else
 ParityValue = 0
End If
If Inverted = True Then
 InvertedValue = 16384
Else
 InvertedValue = 0
End If
If OpenBaudMode = True Then
 OpenBaudModeValue = 32768
Else
 OpenBaudModeValue = 0
End If
fncGetBaudMode = _
 (BitRateValue + ParityValue + InvertedValue + _
 OpenBaudModeValue)
End Function

Listing 1: This Visual-Basic routine calculates the baudmode parameter for the Basic
Stamp’s Serin and Serout statements.

9

The Dec1–Dec5 modifiers wait for the designated number of digits, so there’s no need to
send a non-numeric character with each value. In another variation, SDec and SDec1–
SDec5 enable sending signed values, with "-" preceding the digits of a negative value.

In a similar way, Hex, Hex1–Hex4 and SHex, Shex1–SHex4 send and accept hex
characters 0–9 and A–F (or a–f). The IHex ISHex modifiers require $ preceding each
value. The Bin, SBin, IBin, ISBin modifiers do the same for binary values, with
binary characters 0 and 1 and a binary prefix of %.

Ensuring that the Stamp Sees Incoming Data
SerIn has two other modifiers: Wait and Skip, which can help to ensure that the
Stamp sees the values intended for it while ignoring any others.

Wait causes the Stamp to ignore all data until it receives a value or values matching the
Wait parameter(s). This can be useful in a network where a master node sends a node
address followed by data intended for that node. If the receiving Stamps use the Wait
modifier, they will automatically ignore bytes addressed to other nodes. Because a node
will continue to wait until it recognizes its Wait modifiers, it won’t miss any data
intended for it.

However, there are limitations to using Wait. One is that the data following the node
address can’t include any bytes that equal another node’s address. For example, if a master
node sends a node address of 1 followed by a data byte of 7, when node 7 sees the data
byte, it will think that master is addressing it. A way around this is to send all data with a
Dec, Hex, or Bin modifier and send the node numbers as values (such as 0–7) that don’t
correspond to any ASCII codes used by these formats.

Another limitation to Wait is that nodes can waste a lot of time just watching for their
address to come up. If using the timeout parameter, the timeout count quits on any
received data, so Wait has little use as a data filter. Yet without a timeout, the node can’t
break out of a SerIn if the master fails to send the correct Wait modifier.

If a node is responsible for other activities, it may make more sense to have the program
periodically read any incoming byte. Then if a byte doesn’t match the node address, the
program can move on instead of being stuck in a Wait statement.

Yet another modifier for SerIn is Skip L, which skips over L bytes of input. A network
node might use this to send a series of bytes, with each byte intended for a different node.
Node 1 can read the first byte; Node 2 can skip the first byte and read the next; Node 3
skips 2 bytes and reads the third, and so on.

The Stamp I also has SerIn and SerOut statements, which you can use with any port
bits. These are similar to the Stamp II’s statements, except that they don’t support time-
outs, parity, or pacing, and the maximum bit rate is 2400.

Hardware Handshaking
Another option for ensuring that the Stamp sees all data sent to it is to use the Stamp II’s
fpin parameter to designate a port bit for handshaking. Serout’s fpin may connect to
CTS, while Serin’s fpin may connect to RTS on a remote PC. The PC transmits only
when CTS is high, and the Stamp transmits only when RTS is high. The main drawback of

10

this approach is the need to use additional port bits, cable wires, and possibly drivers and
receivers.

Signal Levels

If the cable is short (15 feet), the Stamp II’s Sin and Sout can connect directly to an RS-
232 port. Because the port outputs on both the Stamp I and II have strong drivers, and
because the Stamp is capable of inverting the signals, a short link between the port bits and
an RS-232 port will also work in most cases, with only a current-limiting resistor at the
RS-232 input. Later chapters have more on Stamp interfaces.

Stamp-to-Stamp Links

Basic Stamps can also use their serial ports to communicate with each other. If the dis-
tance between Stamps is short (15 feet or so), there’s no need for added drivers or receiv-
ers. Just connect a serial output on each Stamp to a serial input on the other, and add a
ground wire if the Stamps don’t share a power supply.

Open Baudmode
Serout includes an open baudmode option that makes it easy for two or more Stamps to
communicate over a single wire. If you’re familiar with open-collector or open-drain out-
puts, open baudmode works in a similar way.

Figure 3 shows the circuits behind a Stamp’s I/O pin. The CMOS output has complemen-
tary NMOS and PMOS transistors. The output has two driven, or active, states. For a logic

Figure 3: The circuits inside a Basic Stamp’s I/O pin.

11

high output, the PMOS transistor switches on, creating a low-resistance path from the out-
put pin to +5V. For a logic low output, the NMOS transistor switches on, creating a low-
resistance path from the output to ground. An input buffer enables programs to read the
logic level at the pin. The resistor and diodes protect the chip by limiting input voltages
and currents.

When the pin is being used as an input, neither transistor is on. The output is high imped-
ance and has no effect on the circuits it connects to. The input buffer reads the logic level
of whatever circuits connect to the pin. Other terms to describe this state are off, open, or
tristated.

In normal operation, a pin being used as an output switches between active high and active
low. In a full-duplex serial link, the serial output connects to an input pin on another Stamp
or other device.

Because each pin can act as an output or input, why not make a 1-wire link by connecting
bits on two or more Stamps? In fact, this is possible, as long as only one bit at a time is
configured as an output. If two connected outputs are enabled at the same time, and if one
output is high and the other low, the result is a low impedance path from +5V to ground
that causes the bits’ output transistors to draw high currents.

To prevent this from happening, all Stamps in the link but one must execute either a
Serin to receive data or an Input statement configure the bit as input. For example, one
Stamp sends data with Serout. After sending the data, and before another Stamp exe-
cutes a Serout, the transmitting Stamp must execute a Serin or Input statement to
configure the bit as an input.

Open baudmode provides a simpler and safer way to do this. Instead of switching between
active high and active low, the open baudmode outputs switch between open and a driven
state. A pullup or pulldown resistor determines the state of the line when all outputs that
connect to the line are open, and whether the line uses inverted or noninverted data. Figure
4 illustrates.

If Serout sends noninverted data, the line uses a pullup to +5V. If all of the outputs are
logic 1s, all are open and the pullup brings the line high. Writing 0 to any output pulls the
line low because the resistance between that output and GND is much less than the resis-
tance between the pullup and +5V.

If Serout uses inverted data, the line uses a pulldown to ground. If all of the outputs are
open, the pulldown brings the line low. Writing 0 to any output bit results in a logic high at
the pin, which pulls the line high.

With either configuration, an idle (not transmitting) pin is open. As long as only one
Stamp transmits at a time, the data will arrive without errors. The Stamps that aren’t trans-
mitting can use Serin statements to read data on the line.

Open baudmode is for use only when connecting Stamps directly, without buffers or driv-
ers, using any of I/O bits 0–15, with short cables. All connected Stamps must also share a
ground connection. This type of link should handle 8 or more Stamps.

12

Other Options for Basic Stamps

Besides the Basic Stamp II’s dedicated serial interface, the Basic Stamp I and II can use
any other port bits for serial communications. The bits have TTL-compatible inputs and
outputs.

A short-range interface from a Stamp’s port bit to an RS-232 port requires just one resis-
tor, as Figure 5A shows. This is because the Stamp’s output drivers are strong enough to
drive a short RS-232 link directly, and the inputs have protection diodes that limit voltages
to +0.6V greater than chip’s the power supply. The resistor provides additional protection
by limiting input current. The Stamp’s baudmode parameter must use inverted signals with
this interface.

For a true RS-232 interface, you can connect a MAX232 or similar to any of the I/O port
bits. If you want to use the Stamp’s Sin and Sout pins, it’s a little more complicated
because of the Stamp’s additional circuits at these pins.

The Stamp’s hardware inverts the voltages at Sin and Sout, and RS-232 interface chips also
invert the signals. This is no problem when using SerIn and Serout statements, because
you can set baudmode to invert the signals in firmware. But when using the Sin and Sout
pins for programming and debugging, there’s no way to specify inverted signals. A solu-
tion is to add inverters to reinvert the signals. You can use ordinary 5V inverters, or spare
MAX232 gates for this, as Figure 5B shows.

Figure 4: The Stamp II’s open baudmode allows easy networking for short links.

13

PC-to-Basic Stamp Link

Figure 6 shows a link between a PC and a Basic Stamp II. The link uses a true RS-232
interface to link two of the Stamp’s port pins to a PC’s serial port. A MAX233 converts to
RS-232 voltages. This circuit leaves the Stamp’s Sin and Sout pins unused, though you can
connect them to another PC’s serial port for development and debugging.

The Stamp communicates with the PC as in the previous example, exchanging blocks of
eight bytes. Listing 2 is the Stamp’s program code.

Exchanging Data

The Stamp’s serial port has no input buffer. Because of this, the PC first sends a byte to get
the Stamp’s attention (in fncGetStampsAttention). Because the Stamp might be
busy doing something else when the PC sends its byte, the PC sends the byte repeatedly
until it either sees a response or decides that the Stamp isn’t going to respond at all.

Figure 5: (A) For a short link to an RS-232 port, Basic Stamp I/O pins require only
a series resistor at the input bit. (B) For a true RS-232 link at Sin and Sout, use a
MAX233 or similar, with double inverters.

14

The PC adds a delay of at least one byte width between the bytes. This is to help the Stamp
identify the Start bit. Otherwise, if SerIn begins reading in the middle of a byte, it will
misread the value. The Stamp’s SerIn statement skips the first byte it detects, in case it’s
a partial byte, and waits for the next Start bit. Figure 7’s waveforms show a PC signaling a
Stamp until the Stamp responds.

The Stamp alternates between watching for incoming serial data and carrying out its own
duties. With each Serin statement, the Stamp spends an allotted time waiting for incom-
ing data. When the Stamp detects a byte, it branches to a subroutine that sends a byte back
to the PC to acknowledge that it has received the byte.

The Stamp then executes a SerIn statement and waits for the expected eight bytes. The
PC sends the bytes, and the Stamp stores them and sends eight bytes back to the PC. The
PC reads the received bytes and the communication is complete.

If the Stamp sees no data, it jumps to the beginning of its program.

Figure 6: A link between a Basic Stamp and a PC.

Figure 7: Trace 1 shows a byte sent repeatedly by a PC to a Basic Stamp. When
the Stamp responds (trace 2), the PC stops sending.

15

'StampII RS-232 link to PC.
'The PC and Stamp exchange blocks of 8 bytes.
'All debug statements are for troubleshooting & may be removed.

'Variables:
DataIn var byte(8)
DataOut var byte(8)

Constants:
'Serial I/O bits:
'serial transmit output
SerialOutput con 14
'serial receive input
SerialInput con 15

Attention con $A5
Acknowledge con $A6

'Serial transmissions are at 2400 bps, noninverted, 8-N-1
BaudMode con 396

'Timeouts are 2 seconds.
TimeOut con 2000

'Bits 0-13 are undefined (free for any use).
'Bits 14-15 are for serial link:
dir14=1
dir15=0

'Default test data:
DataOut(0)="1"
DataOut(1)="2"
DataOut(2)="3"
DataOut(3)="4"
DataOut(4)="5"
DataOut(5)="6"
DataOut(6)="7"
DataOut(7)="8"

Listing 2: Basic Stamp II code for an RS-232 link. (Sheet 1 of 2)

16

In the example code, the initial bytes exchanged to get and acknowledge the Stamp’s
attention are specific values, but otherwise have no particular meaning. However, these
bytes could contain data or commands as well.

'main program loop:
debug "Waiting to receive data...",cr
begin:
gosub NodeActivities
'Wait for a byte or timeout.
'Skip the first byte received. (It may be a partial byte.)
'If the expected byte is received, send a reply
serin serialinput,baudmode,timeout,Begin,[Skip 1, DataIn(0)]
debug "received ",dec DataIn(0),cr
if DataIn(0)=Attention then TransferData
goto begin
end

NoData:
debug "No data received.",cr
GoTo Begin

TransferData:
'Send acknowledge byte.
debug "sending ack",cr
serout SerialOutput,BaudMode, [Acknowledge]
'Wait to ensure PC has stopped sending Attention byte.
pause 100
'Read incoming bytes.
Serin SerialInput,baudmode,timeout,NoData,[DataIn(0), DataIn(1),
DataIn(2), DataIn(3), DataIn(4), DataIn(5), DataIn(6), DataIn(7)
]

debug "Received: ",DataIn(0), DataIn(1), DataIn(2), DataIn(3),
DataIn(4), DataIn(5), DataIn(6), DataIn(7),cr

'Send 8 bytes
serout SerialOutput,Baudmode,[DataOut(0), DataOut(1), DataOut(2),
DataOut(3), DataOut(4), DataOut(5), DataOut(6), DataOut(7)]

debug "Sending: ",DataOut(0), DataOut(1), DataOut(2), DataOut(3),
DataOut(4), DataOut(5), DataOut(6), DataOut(7),cr

goto begin

NodeActivities:
'Use this routine for any activities the Stamp is responsible for
on its own.

'Set one output byte to match port bits 0-7.
'DataOut(0)=InL
return

Listing 2: Basic Stamp II code for an RS-232 link. (Sheet 2 of 2)

17

Ensuring that the Stamp Sees Incoming Data

If the Stamp has little else to do except watch for incoming data, it will detect incoming
bytes without problems. If the Stamp spends most of its time in other activities, the timing
of the communications is more critical.

To guarantee that the Stamp will see a byte sent by the PC, two conditions must be met.
First, the interval between bytes sent by the PC should be shorter than the Stamp’s Serin
Timeout value. And the total time that the PC spends trying to get the Stamp’s attention
should be longer than the interval between SerIn statements at the Stamp.

In the example code, the PC sends the byte continuously for up to two seconds, and the
Stamp watches its serial port for one second at a time. The PC could delay up to one sec-
ond between sending each pair of bytes, but sending the bytes continuously ensures the
quickest response from the Stamp. The Stamp must execute SerIn at least once every
two seconds, to ensure that the PC doesn’t time out before the Stamp detects an incoming
byte. If the PC sees no response after two seconds, it displays a message and moves on.

You can adjust the timing values as needed. For example, if the Stamp may delay as much
as 5 seconds between SerIn statements, the PC’s timeout limit should be greater than 5
seconds.

An RS-485 Network

The example RS-485 network presented below uses a master/slave protocol. The master
node communicates with up to seven slave nodes. Each node connects to the network via
an RS-485 interface. The master is a personal computer running Visual Basic, and the
slaves may be other PCs or Basic Stamps. Each slave detects, reads, and responds to mes-
sages directed to it.

You can use the network as a base for designing your own projects using personal comput-
ers or microcontrollers of any type, in any combination, and any programming language.

The Protocol

The network uses a communications protocol designed for simplicity and reliability in
exchanging short messages. A master polls each slave in turn.

Byte Definitions
The network uses the following conventions:

• All data is sent in ASCII Hex format, using the characters 0 through 9 (30h through
39h) and A through F (41h through 46h). A pair of ASCII Hex bytes represents one
binary value.

• Node addresses use ASCII codes for the characters g to n (67h through 6Eh).

• Messages are a defined length. Each message contains four ASCII Hex data bytes.

18

Polling the Nodes
Figure 8 shows the main window for the program. It uses Chapter 4’s template file as a
base. The user can do a single poll of the network, or select an interval for continuous poll-
ing. A Rich Text box displays the results, including the nodes polled, data sent and
received, and time of the last transfer.

The Setup menu includes three selections. The Port Settings form allows selecting a port
and bit rate. The Data File form allows saving of transferred data in a file. The Nodes form
(Figure 9) displays the eight nodes by number, CPU type, address, and whether or not the
node is active (currently in use). All of these are user-selectable, except the master’s node
type and Active check box.

Figure 8: The main window for the RS-485 network enables users to select an
interval for polling the network, to start and stop polling, and to view the latest
results.

Figure 9: The Nodes window enables users to select an address and CPU type for
each node, and to indicate whether or not the node is in use.

19

The master polls each slave in turn, using the following procedure:

• The master sends a slave address, disables its transmitter and waits for a reply.

• All slaves read the address and compare it to their own address.

• The slave that recognizes its address responds by enabling its transmitter, sending its
address back to the master as an acknowledgment, then disabling its transmitter and
waiting for data.

• When the master receives the acknowledgment, it knows that the slave is waiting for a
message. The master sends the message, consisting of four ASCII Hex bytes. It then
disables its transmitter and waits for a reply.

• When the slave receives the message, it stores the data, enables its transmitter, and
sends five bytes back to the master: its address, plus four ASCII Hex bytes. It then dis-
ables its transmitter and takes any action requested by the master’s message.

• The master stores the reply from the slave, re-enables its transmitter, and is then free to
poll another slave.

The other nodes may read the addresses and messages, but take no action because none of
the bytes match their addresses.

Messages
The data bytes in the messages can represent anything at all. The master may send a com-
mand to tell the slave to read a sensor, followed by an ASCII Hex value that indicates
which sensor to read. Or the master may send a a byte that selects a motor to control, and
another that selects a speed and direction for the motor. In reply, a node may send data
about switch states, sensor readings, alarm conditions, time and date information, or any
digital outputs or logic levels. The slaves also transmit their address with each message to
assure the master that the correct node is replying.

Customizing
You can change and adapt this format to fit a particular use. For example, the link may
transfer more or fewer data bytes, and it may allow more or fewer nodes.

Table 2 shows the defined uses for each of the 256 byte values. Many values are undefined,
and you can assign meanings to these and use them as needed. For example, F0h through
FFh may each indicate a command.

The Link

Figure 10 is shows an example of wiring you can use for this network. This is just one pos-
sibility. The network may use any appropriate components for a half-duplex link, includ-
ing high-speed, low-speed, low-voltage, short-distance, and isolated components. A PC
may also use an expansion card with an RS-485 interface, allowing higher speeds and
eliminating the need to convert RS-232.

Each node uses a 75176B RS-485 transceiver to interface to the network. At the master,
the receiver is always enabled, and RTS controls the driver enable. At the slaves, the driver
and receiver enables are tied together and controlled with one port bit.

20

Table 2: Uses for the 256 byte values
Range (hex) Characters Use

30 -39, 41-46 0-9, A-F ASCII Hex characters

67-6E g-n Node addresses

00-2F, 3A-40, 47-60, 6F-FF Various Unused

Figure 10: Example wiring you can use for the RS-485 network.

21

At the master node, a MAX232A converts the PC’s RS-232 voltages to TTL voltages. The
MAX232A also re-inverts the signals: at its TTL inputs and outputs, a high voltage repre-
sents a logic 1 and a low voltage represents a logic 0. The TTL voltages interface to the
75176 transceiver.

At the PC, the RTS line determines the direction of the 75176. For the microcontrollers,
any output port pin can perform this function.

The first and last nodes on the bus each have a 120-ohm termination resistor. Two 470-
ohm biasing resistors at one end hold the inputs high when no drivers are enabled on the
network. If your link is short line as defined in Chapter 10, you don’t need the 120-ohm
terminations or the 470-ohm biasing resistors.

The serial cable to the PC has to have at least four wires. A standard 9-wire cable will have
the needed connections. Master and slave PC nodes use identical circuits except that the
slave’s driver and receiver enable lines are tied together. In the example slave software, the
slaves don’t read back their transmissions.

For a microcontroller link, I chose Basic Stamps, mainly for their ease of use for debug-
ging, because they can run the network program while maintaining communications with
another host PC.

The Basic Stamp connects directly to its 75176 transceiver. You can use any of the
Stamp’s 16 port bits for the serial link. Node 2 in the schematic shows bit 15 as the receive
input, bit 14 as the transmit output, and bit 13 as the direction-control output. This leaves
13 bits for other uses.

If you want to reserve two more bits for other uses, use Node 4’s wiring for the Stamps.
This configuration uses Sin and Sout for the network interface, and uses only one of the 16
port bits, for direction control. This wiring prevents the use of Sin and Sout for debugging
with the Stamp’s editor software on a PC. The simplest approach is to use port pins for
developing and debugging. When all is working, if desired, change the pin assignments for
Sin and Sout, load the program into the Stamp, then power down, disconnect the PC, con-
nect the RS-485 transceiver, and power back up.

Sin and Sout use external inverters to reinvert the signals so that A > B on the RS-485 line
corresponds to the idle state. This is necessary because Sout gets its logic-low (or negative)
voltage from Sin. Sin must be low when the link is idle. But on the RS-485 link, the idle
state is A > B, which results in a logic high at pin 1 of the ’176. The inverter converts this
to the required logic low. The second inverter just ensures that both signals use the same
polarity.

For the network wires, unshielded twisted pair works well. Include the ground wire to
each node unless you’re sure that all nodes already have a common signal-ground connec-
tion.

The Master’s Programming

Listing 3 is Visual-Basic program code for the master node. Many parts of the code are
similar or identical to Chapter 8’s 2-device link. Both applications exchange data with
remote computers, but this time there are multiple nodes to deal with.

22

Option Explicit
'A master node communicates with up to 7 slave nodes
'over a half-duplex RS-485 interface.
'Each node has an address.
'Each message consists of the receiver's address, followed by
'4 ASCII Hex bytes representing 2 binary values.
'Each reply consists of the sender's address,
'followed by 4 ASCII Hex bytes representing 2 binary values.
Option Base 0
'Delay (milliseconds) to ensure RTS has toggled (Windows delay):
Const RTSDelay = 200
'Delay (milliseconds) before enabling transmitter,
'to allow the slave to disable its transmitter.
Const EnableDelay = 500
'Delay (milliseconds) to wait for a reply from a slave.
Const ReplyDelay = 3000
'Node 0 is the master; other nodes are slaves.
Const HighestNodeNumber = 7
'With each message, the master sends and receives
'4 ASCII Hex bytes.
Const NumberOfDataBytesOut = 4
Const NumberOfDataBytesIn = 4

Private Type typNodes
 Address(0 To HighestNodeNumber) As Byte
 DataOut1(0 To HighestNodeNumber) As Byte
 DataOut2(0 To HighestNodeNumber) As Byte
 DataIn1(0 To HighestNodeNumber) As Byte
 DataIn2(0 To HighestNodeNumber) As Byte
 Status(0 To HighestNodeNumber) As String
 Cpu(0 To HighestNodeNumber) As String
 Active(0 To HighestNodeNumber) As Integer
 LastAccess(0 To HighestNodeNumber) As String
End Type
Private Type typDataTransferFormat
 SingleOrContinuous As String
 IntervalUnits As String
 IntervalValue As Single
End Type

Dim SelectedNode As Integer
Dim PollInterval As Integer
Dim DataOut(NumberOfDataBytesOut - 1) As Byte
Dim DataIn(NumberOfDataBytesIn - 1) As Byte
Dim DataTransferFormat As typDataTransferFormat
Dim PreviousTime As Date
Dim TimeOfTransfer As String
Dim TransferInProgress As Boolean

Dim Nodes As typNodes

Listing 3: Code for the RS-485 network’s main window. (Sheet 1 of 13)

23

Private Function fncConfirmTransmittedData _
 (Buffer As Variant) _
 As Integer
'Ensure that all data has transmitted by reading it back.
'Receiver must be enabled!
'Returned values:
'-1 = Data read back successfully
'0 = Data didn't match
'1 = Timeout
Dim DataReadBack As String
'Estimate the time to transmit the data:
tmrTimeout.Interval = OneByteDelay * LenB(Buffer) + 500
tmrTimeout.Enabled = True
TimedOut = False
Do
 DoEvents
Loop Until MSComm1.InBufferCount >= Len(Buffer) Or TimedOut = True
DataReadBack = MSComm1.Input
If StrComp(DataReadBack, Buffer, vbBinaryCompare) = 0 Then
 fncConfirmTransmittedData = -1
Else
 If TimedOut = False Then
 fncConfirmTransmittedData = 0
 Else
 fncConfirmTransmittedData = 1
 End If
End If
tmrTimeout.Enabled = False
TimedOut = False
End Function

Private Function fncCreateMessage _
 (NodeNumber As Integer) _
 As String
'A message consists of four bytes in ASCII Hex format.
'Each ASCII Hex pair represents the value of a byte.
Dim MessageLength As Integer
Dim MessageToSend As String
 MessageLength = NumberOfDataBytesOut - 1
 Call GetDataToSend(NodeNumber)
 'Create the message, consisting of
 '4 bytes that contain the 2 data bytes in ASCII Hex format.
 'Each byte represents 1 hex digit (4 bits).
 'Convert the 2 data bytes to ASCII Hex
 'and store in the Message string.
 MessageToSend = _
 fncByteToAsciiHex(Nodes.DataOut1(NodeNumber)) & _
 fncByteToAsciiHex(Nodes.DataOut2(NodeNumber))
 fncCreateMessage = MessageToSend
End Function

Listing 3: Code for the RS-485 network’s main window. (Sheet 2 of 13)

24

Private Function fncDisplayDateAndTime() As String
'Date and time formatting.
fncDisplayDateAndTime = _
 CStr(Format(Date, "General Date")) & ", " & _
 (Format(Time, "Long Time"))
End Function

Private Function fncWaitForAck(NodeNumber As Integer) As Boolean
'End on receiving Acknowledge from the slave or timeout.
Dim Ack As Boolean
Dim NodeAddress As String
Dim ReceivedData As String
'The Acknowledge is the node address.
NodeAddress = Chr(Nodes.Address(NodeNumber))
Ack = False
tmrTimeout.Interval = ReplyDelay
'Disable the transmitter until Ack is received or timeout.
Call DisableTransmitter
'Wait for Acknowledge.
Do
 tmrTimeout.Enabled = True
 TimedOut = False
 Do
 DoEvents
 Loop Until (MSComm1.InBufferCount >= 1) Or (TimedOut = True)
 If TimedOut = False Then
 tmrTimeout.Enabled = False
 'Read the byte & compare to what was sent.
 ReceivedData = MSComm1.Input
 If StrComp _
 (ReceivedData, NodeAddress, vbBinaryCompare) = 0 Then
 Ack = True
 Nodes.DataIn1(NodeNumber) = Asc(ReceivedData)
 Else
 'if the Ack doesn't match the node address:
 Ack = False
 Call SaveResults(NodeNumber, 0, 0, "Ack Error")
 End If
 Else
 Ack = False
 Call SaveResults(NodeNumber, 0, 0, "No Ack")
 End If
Loop Until Ack = True Or TimedOut = True
tmrTimeout.Enabled = False
fncWaitForAck = Ack
TimedOut = False
Call EnableTransmitter(EnableDelay)
End Function

Listing 3: Code for the RS-485 network’s main window. (Sheet 3 of 13)

25

Private Function fncWaitForReply _
 (NodeNumber As Integer) _
 As Boolean
'From the slave, read the node address & 4 ASCII Hex bytes.
Dim Ack As Boolean
Dim Reply As Boolean
Dim ReceivedData As String
Ack = False
Reply = False
TimedOut = False
tmrTimeout.Interval = ReplyDelay
'Disable the transmitter until bytes are received or timeout.
Call DisableTransmitter
tmrTimeout.Enabled = True
Do
 'Wait for reply
 TimedOut = False
 Do
 DoEvents
 Loop Until (MSComm1.InBufferCount > 4) Or (TimedOut = True)
 If TimedOut = False Then
 tmrTimeout.Enabled = False
 ReceivedData = MSComm1.Input
 Reply = True
 If StrComp(Asc(Left(ReceivedData, 1)), _
 Nodes.Address(NodeNumber), vbBinaryCompare) = 0 Then
 'If the first byte equals the slave's address,
 'get the numeric value of each pair of ASCII Hex bytes.
 Call SaveResults _
 (NodeNumber, _
 Val("&h" & Mid(ReceivedData, 2, 2)), _
 Val("&h" & Mid(ReceivedData, 4, 2)), _
 "OK")
 Else
 'If the first byte doesn't equal the node address:
 Call SaveResults(NodeNumber, 0, 0, "Data Error")
 End If
 Else
 'If the wait for a reply times out:
 Call SaveResults(NodeNumber, 0, 0, "Reply Timeout")
 End If
Loop Until Reply = True Or TimedOut = True
tmrTimeout.Enabled = False
Call EnableTransmitter(EnableDelay)
fncWaitForReply = Reply
End Function

Listing 3: Code for the RS-485 network’s main window. (Sheet 4 of 13)

26

Private Sub cboIntervalValue_Click()
'Store the selected interval for data transfers.
DataTransferFormat.IntervalValue = Val(cboIntervalValue.Text)
'With shorter intervals, check elapsed time more often.
Select Case DataTransferFormat.IntervalUnits
 Case "seconds"
 tmrTransferInterval.Interval = 100
 Case "minutes", "hours"
 tmrTransferInterval.Interval = 1000
End Select
End Sub

Private Sub cmdStart_Click()
'Initiate data transfer.
Select Case DataTransferFormat.SingleOrContinuous
 Case "single"
 'Transfer data once.
 'Disable the Start button until polling is finished.
 cmdStart.Enabled = False
 Call PollSlave
 cmdStart.Enabled = True
 Case "continuous"
 'Do one transfer immediately, then let the timer take over.
 cmdStart.Enabled = False
 cmdStop.Enabled = True
 cmdStop.SetFocus
 PreviousTime = Now
 tmrTransferInterval.Enabled = True
 Call PollSlave
 Case Else
End Select
End Sub

Private Sub cmdStop_Click()
'Stop transferring data.
tmrTransferInterval.Enabled = False
cmdStop.Enabled = False
cmdStart.Enabled = True
Call DisableTransmitter
End Sub

Private Sub DisableTransmitter()
'Set RTS true (high) to disable the RS485 transmitter
'by bringing its chip-enable low.
'Assumes that a second RS-232 receiver inverts RTS.
MSComm1.RTSEnable = True
End Sub

Listing 3: Code for the RS-485 network’s main window. (Sheet 5 of 13)

27

Private Sub EnableTransmitter(EnableDelay As Single)
'Set RTS false (low) to enable the RS485 transmitter.
'Assumes that a second RS-232 receiver has inverted RTS.
'Delay in milliseconds allows remote node
'to disable its transmitter.
Call Delay(EnableDelay)
MSComm1.RTSEnable = False
'Windows delay:
Call Delay(RTSDelay)
End Sub

Private Sub Form_Load()
Show
Call GetSettings
Call Startup
Load frmPortSettings
Load frmNodes
TransferInProgress = False
tmrTimeout.Interval = ReplyDelay
tmrTransferInterval.Enabled = False
tmrTimeout.Enabled = False
TimedOut = False
Call InitializeDisplayElements
SaveDataInFile = False
Call InitializeNodes
Call GetNewNodeSettings
'The master's transmitter is enabled,
'except when receiving replies.
Call EnableTransmitter(0)
End Sub

Private Sub Form_Unload(Cancel As Integer)
Call ShutDown
Unload frmNodes
Unload frmDataFile
Unload frmPortSettings
Close #2
End
End Sub

Private Sub GetDataToSend(NodeNumber As Integer)
'Dummy data for testing: the current hour and minute.
Dim CurrentTime As String
CurrentTime = CStr(Format(Time, "nnss"))
Nodes.DataOut1(NodeNumber) = Val(Left(CurrentTime, 2))
Nodes.DataOut2(NodeNumber) = Val(Right(CurrentTime, 2))
End Sub

Listing 3: Code for the RS-485 network’s main window. (Sheet 6 of 13)

28

Public Sub GetNewNodeSettings()
'Store user changes made on the Nodes form.
Dim Count As Integer
 Nodes.Address(0) = CInt("&h" & frmNodes.cboAddress(0).Text)
For Count = 1 To 7
 Nodes.Cpu(Count) = frmNodes.cboCPU(Count).Text
 Nodes.Address(Count) = _
 CInt("&h" & frmNodes.cboAddress(Count).Text)
 Nodes.Active(Count) = frmNodes.chkNodeActive(Count).Value
Next Count
End Sub

Private Sub InitializeDisplayElements()
optSingleOrContinuous(0).Value = True
optIntervalUnits(0).Value = True
cboIntervalValue.ListIndex = 0
rtxStatus.Locked = True
rtxStatus.Text = ""
DataTransferFormat.IntervalValue = 1
cmdStop.Enabled = False
End Sub

Private Sub InitializeNodes()
Dim Count As Integer
For Count = 0 To HighestNodeNumber
 Nodes.DataIn1(Count) = 0
 Nodes.DataIn2(Count) = 0
 Nodes.Status(Count) = ""
 Nodes.LastAccess(Count) = ""
 Nodes.Cpu(Count) = ""
Next Count
Call UpdateDisplay
End Sub

Private Sub mnuDataFile_Click(Index As Integer)
frmDataFile.Show
End Sub

Private Sub mnuNodes_Click(Index As Integer)
frmNodes.Show
End Sub

Private Sub mnuPortSettings_Click(Index As Integer)
frmPortSettings.Show
End Sub

Listing 3: Code for the RS-485 network’s main window. (Sheet 7 of 13)

29

Private Sub optIntervalUnits_Click(Index As Integer)
'Set the interval combo box to match the units selected.
Dim Maximum As Integer
Dim Count As Integer
Select Case Index
 Case 0
 Maximum = 59
 DataTransferFormat.IntervalUnits = "seconds"
 Case 1
 Maximum = 59
 DataTransferFormat.IntervalUnits = "minutes"
 Case 2
 Maximum = 24
 DataTransferFormat.IntervalUnits = "hours"
End Select
cboIntervalValue.Clear
For Count = 1 To Maximum
 cboIntervalValue.AddItem CStr(Count)
Next Count
cboIntervalValue.ListIndex = 0
End Sub

Private Sub optPollUnits_Click(Index As Integer)
'Set the combo box items to match the units selected.
Dim Maximum As Integer
Dim Count as Integer
Select Case Index
 Case 0, 1
 'seconds, minutes
 Maximum = 59
 Case 2
 'hours
 Maximum = 24
End Select
End Sub

Private Sub optSingleOrContinuous_Click(Index As Integer)
Select Case Index
 Case 0
 DataTransferFormat.SingleOrContinuous = "single"
 'Disable interval selection:
 optIntervalUnits(0).Enabled = False
 optIntervalUnits(1).Enabled = False
 optIntervalUnits(2).Enabled = False
 Case 1
 DataTransferFormat.SingleOrContinuous = "continuous"
 'Enable interval selection:
 optIntervalUnits(0).Enabled = True
 optIntervalUnits(1).Enabled = True
 optIntervalUnits(2).Enabled = True
End Select
End Sub

Listing 3: Code for the RS-485 network’s main window. (Sheet 8 of 13)

30

Private Sub PollSlave()
'Send the node address & wait for Acknowledge.
'If Ack received, send data, wait for reply.
'Store the results.
Dim AckReceived As Boolean
Dim AttemptNumber As Integer
Dim Buffer As Variant
Dim Count As Integer
Dim LastNode As Integer
Dim MessageToSend As Variant
Dim NumberOfTries As Integer
Dim ReplyReceived As Boolean
Dim TransmitFinished As Boolean
TransferInProgress = True
For Count = 1 To HighestNodeNumber
'Skip the node if it isn't selected (Active) on the Nodes form.
 If Nodes.Active(Count) = 1 Then
 'Clear the transmit and receive buffers
 MSComm1.OutBufferCount = 0
 If MSComm1.InBufferCount > 0 Then
 Buffer = MSComm1.Input
 EndIf
 'Create the message from the stored values.
 MessageToSend = fncCreateMessage(Count)
 'Store the time of the poll.
 Nodes.LastAccess(Count) = fncDisplayDateAndTime
 'Send the node address as a text character.
 Buffer = Chr(Nodes.Address(Count))
 'For Stamp and other slaves without input buffers,
 'poll more than once if needed.
 Select Case Nodes.Cpu(Count)
 Case "PC"
 NumberOfTries = 1
 Case "Stamp"
 NumberOfTries = 2
 End Select
 AttemptNumber = 0

Listing 3: Code for the RS-485 network’s main window. (Sheet 9 of 13)

31

 Do
 MSComm1.Output = Buffer
 'Wait for the data to transmit
 Select Case fncConfirmTransmittedData(Buffer)
 Case -1
 'If success, wait for Acknowledge.
 AckReceived = fncWaitForAck(Count)
 Case 0
 Nodes.Status(Count) = "Transmit error"
 Case 1
 Nodes.Status(Count) = "Ack Timeout"
 End Select
 AttemptNumber = AttemptNumber + 1
 Loop Until AckReceived = True Or _
 AttemptNumber = NumberOfTries
 If AckReceived = True Then
 MSComm1.Output = MessageToSend
 'Delay to let the data transmit
 Select Case fncConfirmTransmittedData(MessageToSend)
 Case -1
 'Data has transmitted.
 'Wait for the slave's reply.
 ReplyReceived = fncWaitForReply(Count)
 Case Else
 Nodes.Status(Count) = "Transmit error"
 End Select
 End If
 Call UpdateDisplay
 End If
Next Count
If SaveDataInFile = True Then
 Call WriteResultsToFile
End If
TransferInProgress = False
End Sub

Private Sub SaveResults _
 (NodeNumber As Integer, _
 Data1 As Byte, _
 Data2 As Byte, _
 ResultStatus As String)
 Nodes.DataIn1(NodeNumber) = Data1
 Nodes.DataIn2(NodeNumber) = Data2
 Nodes.Status(NodeNumber) = ResultStatus
End Sub

Listing 3: Code for the RS-485 network’s main window. (Sheet 10 of 13)

32

Private Sub WriteResultsToFile()
'Save received data and time in a file.
Dim Count As Integer
For Count = 1 To HighestNodeNumber
 'Skip if the node isn't selected (active) on the Nodes form.
 If Nodes.Active(Count) = 1 Then
 Write #2, _
 Count, _
 Nodes.LastAccess(Count), _
 Nodes.DataOut1(Count), _
 Nodes.DataOut2(Count), _
 Nodes.DataIn1(Count), _
 Nodes.DataIn2(Count), _
 Nodes.Status(Count)
 End If
Next Count
End Sub

Private Sub tmrTransferInterval_Timer()
'See if it's time to do a transfer.
Dim CurrentTime As Date
Dim Units As String
CurrentTime = Now
Select Case DataTransferFormat.IntervalUnits
 Case "seconds"
 Units = "s"
 Case "minutes"
 Units = "n"
 Case "hours"
 Units = "h"
End Select
'If elapsed time since the last transfer is more than
'the selected interval, do a data transfer.
If DateDiff(Units, PreviousTime, CurrentTime) >= _
 DataTransferFormat.IntervalValue Then
 PreviousTime = CurrentTime
 'But don't start a new transfer if one is in progress.
 If TransferInProgress = False Then
 Call PollSlave
 End If
End If
End Sub

Private Sub tmrTimeout_Timer()
tmrTimeout.Enabled = False
TimedOut = True
End Sub

Listing 3: Code for the RS-485 network’s main window. (Sheet 11 of 13)

33

Private Sub UpdateDisplay()
'Show the latest information for all nodes
Dim Column As Integer
Dim DataIn1Display As String
Dim DataIn2Display As String
Dim Count As Integer
'Set up 5 columns
With rtxStatus
 .SelTabCount = 5
 For Column = 0 To .SelTabCount - 1
 .SelTabs(Column) = 1000 * Column
 Next Column
End With
rtxStatus.Text = "Node #" & Chr(vbKeyTab) _
 & "Data out" & Chr(vbKeyTab) _
 & "Data in" & Chr(vbKeyTab) _
 & "Status" & Chr(vbKeyTab) _
 & "Last Access" & vbCrLf
For Count = 1 To HighestNodeNumber
 'Skip if the node isn't selected (active) on the Nodes form.
 If Nodes.Active(Count) = 1 Then
 Select Case Nodes.Status(Count)
 Case "OK"
 DataIn1Display = _
 fncByteToAsciiHex(Nodes.DataIn1(Count))
 DataIn2Display = _
 fncByteToAsciiHex(Nodes.DataIn2(Count))
 Case Else
 DataIn1Display = ""
 DataIn2Display = ""
 End Select
 rtxStatus.SelStart = Len(rtxStatus.Text)
 rtxStatus.SelText = _
 Hex$(Count) & Chr(vbKeyTab) _
 & fncByteToAsciiHex(Nodes.DataOut1(Count)) & " " _
 & fncByteToAsciiHex(Nodes.DataOut2(Count)) _
 & Chr(vbKeyTab) _
 & DataIn1Display & " " & DataIn2Display _
 & Chr(vbKeyTab) _
 & Nodes.Status(Count) & Chr(vbKeyTab) _
 & Nodes.LastAccess(Count) & vbCrLf
 End If
Next Count
End Sub

Listing 3: Code for the RS-485 network’s main window. (Sheet 12 of 13)

34

The master reads back all data it sends. When the transmitted data has been read back, the
master knows that it’s safe to disable its transmitter. Reading back the data also provides
error-checking. If another node has mistakenly enabled its transmitter, or if Windows’ tim-
eout delay expires, the master’s data won’t transmit and won’t be read back. After receiv-
ing data, the master delays before re-enabling its transmitter, to give the sending node time
to disable its transmitter.

Selecting Nodes

Listing 4 is the code for the Nodes window that enables users to select which nodes are
active, and what type of CPU the node contains.

Slave Programming

Listing 5 is the program stored in each Basic Stamp when using port bits for serial com-
munications. Each node must have a unique address. The program disk also includes
Stamp code for using Sin and Sout for communications and QuickBasic code for a slave
node on a DOS PC.

Public Function fncInitializeComPort _
 (BitRate As Long, PortNumber As Integer) As Boolean
'BitRate and PortNumber are passed to this routine.
'All other properties are set explicitly in the code.
Dim ComSettings As String
If MSComm1.PortOpen = True Then
 MSComm1.PortOpen = False
End If
ComSettings = CStr(BitRate) & ",N,8,1"
MSComm1.CommPort = PortNumber
' bit rate, no parity, 8 data, and 1 stop bit.
MSComm1.Settings = ComSettings
'Set to 0 to read entire buffer on Input
MSComm1.InputLen = 0
MSComm1.InBufferSize = 256
'Input and output data are text.
MSComm1.InputMode = comInputModeText
'MSComm does no handshaking.
MSComm1.Handshaking = comNone
MSComm1.OutBufferSize = 256
MSComm1.EOFEnable = False
'No OnComm event on received data.
MSComm1.RThreshold = 0
'No OnComm transmit event.
MSComm1.SThreshold = 0
MSComm1.PortOpen = True
OneByteDelay = fncOneByteDelay(BitRate)
End Function

Listing 3: Code for the RS-485 network’s main window. (Sheet 13 of 13)

35

Option Explicit
'Enables the user to specify the type & address of remote nodes.

Private Sub cmdOK_Click()
Call frmMain.GetNewNodeSettings
Hide
End Sub

Private Sub Form_Load()
Call InitializeNodeCpuComboBoxes
Call InitializeNodeAddressComboBoxes
Call InitializeNodeActiveCheckBoxes
Call GetSettings
Call frmMain.GetNewNodeSettings
End Sub

Private Sub Form_Unload(Cancel As Integer)
Call SaveSettings
End Sub

Private Sub GetSettings()
Dim Count As Integer
 cboAddress(Count).ListIndex = GetSetting _
 (ProjectName, "Startup", "NodeAddress" & CStr(0), 0)
For Count = 1 To 7
 cboCPU(Count).ListIndex = GetSetting _
 (ProjectName, "Startup", "NodeCPU" & CStr(Count), 0)
 cboAddress(Count).ListIndex = GetSetting _
 (ProjectName, "Startup", "NodeAddress" & CStr(Count), 0)
 chkNodeActive(Count).Value = GetSetting _
 (ProjectName, "Startup", "NodeActive" & CStr(Count), 1)
Next Count
End Sub

Private Sub InitializeNodeActiveCheckBoxes()
Dim Count As Integer
For Count = 1 To 7
 chkNodeActive(Count).Value = 1
Next Count
End Sub

Listing 4: Code for the Nodes window, which enables users to select and configure
nodes in the network. (Sheet 1 of 2)

36

A Simple Stamp Network

The second network is example is a very simple one. It connects multiple Basic Stamp II’s
using open-baud mode. The programming uses non-inverted communications, so the data
line uses a pull-up resistor to +5V.

The programming is again a master/slave network. Listing 6 is the master’s program, and
Listing 7 is the slave’s. For use in debugging, the code reads and sets I/O bits on each
Stamp.

This network is suitable for as many as eight Stamps, over a total distance of about 15 feet.
With more nodes and over longer distances, proceed at your own risk!

The network traffic is half-duplex and uses just one port bit.

Private Sub InitializeNodeAddressComboBoxes()
Dim Count As Integer
Dim Address As Integer
'Address range is 67h to 6Eh
For Count = 0 To 7
 For Address = &H67 To &H6E
 cboAddress(Count).AddItem Hex$(Address)
 Next Address
Next Count
For Count = 0 To 7
 cboAddress(Count).ListIndex = Count
Next Count
End Sub

Private Sub InitializeNodeCpuComboBoxes()
Dim Count As Integer
For Count = 1 To 7
 cboCPU(Count).AddItem "PC"
 cboCPU(Count).AddItem "Stamp"
Next Count
End Sub

Private Sub SaveSettings()
Dim Count As Integer
SaveSetting ProjectName, "Startup", _
 "NodeAddress" & CStr(0), cboAddress(0).ListIndex
For Count = 1 To 7
 SaveSetting ProjectName, "Startup", _
 "NodeCPU" & CStr(Count), cboCPU(Count).ListIndex
 SaveSetting ProjectName, "Startup", _
 "NodeAddress" & CStr(Count), cboAddress(Count).ListIndex
 SaveSetting ProjectName, "Startup", _
 "NodeActive" & CStr(Count), chkNodeActive(Count).Value
Next Count
End Sub

Listing 4: Code for the Nodes window, which enables users to select and configure
nodes in the network. (Sheet 2 of 2)

37

'Basic Stamp II RS-485 network node.
'The Stamp periodically waits for serial input.
'If it receives a byte that matches its node number,
'it sends an Acknowledge, waits for a message, and
'sends a message in reply.
'If the received byte doesn't match, or if the wait times out,
'the Stamp takes no action at the serial port
'and continues on with its other activities.
'All debug statements are for testing & may be removed.

'The RS-485 transmit and receive uses 3 port bits.
'One port bit is direction control.

'Each node must have a unique address!
'Allowed addresses are 68h through 6Eh.
NodeAddress con $6A

Constants:
'Serial-port settings: 2400 bps, non-inverted, 8-N-1
BaudMode con 396

'Serial transmit output
SerialOutput con 14
'Serial receive input
SerialInput con 15
'Direction-control output:
TRControl con 13

'Delay (milliseconds) before enabling transmitter.
'Allows previous node to disable its transmitter.
EnableTransmitterDelay con 500
'Time to wait for incoming data before giving up.
timeout con 2000

'Variables:

DataIn1 var byte
DataIn2 var byte
DataOut1 var byte
DataOut2 var byte

Listing 5: Code for a Basic Stamp II node. (Sheet 1 of 3)

38

'Configure I/O bits as input or output.
dir13=0
dir14=1
'Direction control:
dir15=1
'For debugging, bits 0-3 are outputs, 4-7 are inputs.
dira=%1111
dirb=%0000
'Bits 8-12 are unused.

'Initialize the output high.
high SerialOutput

'main loop:
 debug "RS-485 network",cr

Begin:
'Enable the receiver, disable the transmitter (default state):
low TRControl
gosub NodeActivities
'Wait until a byte is received or timeout.
'If a byte is received, store it in DataIn1.
'If timeout, give up.
serin serialinput,baudmode,timeout,NoData,[DataIn1]
 debug "received: ",hex2 DataIn1,cr
if DataIn1=NodeAddress then GetMessage
NoData:
goto begin

Listing 5: Code for a Basic Stamp II node. (Sheet 2 of 3)

39

GetMessage:
pause EnableTransmitterDelay
'Enable the driver, disable the receiver
high TRControl
'Send NodeAddress
serout SerialOutput,Baudmode,[NodeAddress]
 debug "sending: ",hex2 NodeAddress,cr
'Enable the receiver, disable the driver
low TRControl
'Read 4 ASCII Hex bytes & store as binary values.
Serin SerialInput,baudmode,timeout,NoMessage,[hex2 DataIn1,hex2
DataIn2]

'Reply with the node address and 4 ASCII Hex bytes
'representing 2 binary values.
gosub ProcessReceivedData
'Wait to be sure the master's transmitter is disabled.
pause EnableTransmitterDelay
'Enable the driver, disable the receiver
high TRControl
Serout SerialOutput,baudmode,[NodeAddress,hex2 DataOut1,hex2
DataOut2]

goto Begin

NodeActivities:
'Use for any activities the node is responsible
'for on its own.
return

NoMessage:
 debug "no data received",cr
goto Begin

ProcessReceivedData:
'Some test values and actions for debugging.
 debug "received: ",hex2 DataIn1, " ", hex2 DataIn2,cr
'Set output bits 0-3 to match bits 0-3 of DataIn2:
outa=DataIn2.lownib
'First byte to send is received byte + 1:
DataOut1=DataIn1+1
'Second byte to send contains the values of input bits 4-7:
DataOut2=inb
 debug "sending: ",hex2 NodeAddress, " ", hex2 DataOut1, " ",
hex2 DataOut2, cr

return

Listing 5: Code for a Basic Stamp II node. (Sheet 3 of 3)

40

'Stamp II network example using open-baud mode.
'Master node
'The master sends a byte to each of up to 7 Stamps.
'In response, the receiving Stamp sends a byte to the master.
'Bits 5-7 identify the node the byte is addressed to.
'Bits 0-4 may contain data, commands, or other information.

'In this example, the receiving Stamp sets its port bit 0
'to match the received bit 4. Bits 0-3 are unused.
'When the master receives a reply, it sets its port bit
'corresponding to the node number to match bit 4 of the
'received byte. Bits 5-7 of the reply identify the master
'as the recipient (node 8). Bits 0-3 are undefined.

Node var nib
DataOut var byte(7)
DataIn var byte(7)
InputBits var byte
OutputBits var byte
NodeNumber var nib
temp var byte
'2400 bps, not inverted, open-baud mode
baudmode con 36081

'Pin used for serial I/O:
ComBit con 7

inputs:
dir0= 0
dir1= 0
dir2= 0
dir3= 0
dir4= 0
dir5= 0
dir6= 0
'This pin is input except during Serout
dir7 = 0

Listing 6: Code for an open-baudmode network’s master node. (Sheet 1 of 3)

41

'outputs:
dir8= 1
dir9= 1
dir10= 1
dir11= 1
dir12= 1
dir13= 1
dir14= 1

'Bit 15 is unused.

begin:
GoSub DoPortIO
GoSub PollTheStamps
goto begin

PollTheStamps:
'Send and receive a byte from each Stamp.
For Node = 0 to 6
 'Send the appropriate DataOut byte.
 serout ComBit, baudmode,[DataOut(Node)]
 debug "Node=",hex node, " Output=",hex Dataout(node),cr
 'Wait for reply; skip if no response.
 serin ComBit, baudmode, 500,NextNode,[DataIn(Node)]
 debug " Input=",hex DataIn(Node),cr
 NextNode:
 'Pause for Stamps to catch up.
 pause 500
Next
return

DoPortIO:
'Read and write to port bits.
'Read port bits 0-7.
InputBits=InL
'Store the bit values as bit 4
'in the appropriate bytes in the DataOut array.
'(Bit 7 is unused.)
outputbits=0

Listing 6: Code for an open-baudmode network’s master node. (Sheet 2 of 3)

42

For Node=0 to 6
 'Store bit 0 of InputBits as bit 4 of DataOut(Node)
 DataOut(Node)=(Node * $20) + (InputBits.Bit0 * $10)
 'Shift Inputs right to position the next bit as bit 0.
 InputBits=InputBits >> 1
 'Write to port bits 8-14.
 'Store bit 4 of the received byte as bit 7 of PortOutputs.
 'Use Temp variable to get value of bit4 from array byte
 Temp=DataIn(Node)
 OutputBits.bit7 = Temp.bit4
 'Shift PortOutputs right to position a new bit as bit 7.
 OutputBits=OutputBits >> 1
'debug dec nodenumber, " rec: ",hex datain.bit4(nodenumber*8),
"out: ",bin outputbits,cr

'debug hex dataout(nodenumber),cr
Next
'debug "output: ",hex outputbits,cr
'Set port bits 8-14 to match PortOutputs.
OutH=OutputBits
return

Listing 6: Code for an open-baudmode network’s master node. (Sheet 3 of 3)

43

’Stamp II network example using open-baud mode.
'Slave node
'When the slave receives a byte, it sets its bit 0
'to match bit 4 of the received byte.
'Bits 5-7 identify the node. Bits 0-3 are unused.

'2400 bps, not inverted, open-baud mode
baudmode con 36081

'Pin used for serial I/O:
ComBit con 7

'Each slave node has a unique number, 0-6.
'The master is node 7.
Node con 0

DataOut var byte
DataIn var byte
Address var nib

inputs:
dir0= 0
'Bit 7 is input except during Serout
dir7= 0

'outputs:
dir1= 1

'Bits 2-6, 8-15 are unused.

'Set bits 5-7 to the master’s address.
DataOut = $E0

begin:
gosub NodeActivities
'Watch for incoming data; quit if no activity.
'debug "watching"
serin ComBit, baudmode, 1000, begin,[DataIn]
'debug hex datain,cr
'If bits 5-7 match the node number, take action.
Address=DataIn >> 5
debug "Address: ",dec address,cr
if Address = Node then Respond
goto begin

Listing 7: Code for an open-baudmode network’s slave node. (Sheet 1 of 2)

44

Respond:
'Set bit 1 to match bit 4 of DataIn
Out1=DataIn.bit4
'Read bit0 and set bit 4 of DataOut equal to it.
DataOut=$E0 + ($10 * in0)
debug hex dataout,cr
'Send the reply
serout ComBit, baudmode, [dataout]
goto begin

NodeActivities:
'Place other node activities here.
return

Listing 7: Code for an open-baudmode network’s slave node. (Sheet 2 of 2)

